This commit is contained in:
Zack Buhman 2025-09-16 15:07:04 -05:00
parent 6413c2ef1d
commit b668f34e53
8 changed files with 30694 additions and 0 deletions

9
.gitignore vendored
View File

@ -3,3 +3,12 @@
*.pyc *.pyc
__pycache__ __pycache__
*.gch *.gch
*.o
*.mod
*.ko
*~
*.symvers
.*
*.cmd
*.order
*.mod.c

58
main.c Normal file
View File

@ -0,0 +1,58 @@
#include <sys/types.h>
#include <sys/mman.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#include <assert.h>
#include <fcntl.h>
#include "voodoo2.h"
struct name_int {
const char * name;
uint32_t value;
};
void print_registers(struct voodoo2_reg * reg)
{
const struct name_int registers[] = {
{"status", reg->status},
{"fbiInit0", reg->fbiInit0},
{"fbiInit1", reg->fbiInit1},
{"fbiInit2", reg->fbiInit2},
{"fbiInit3", reg->fbiInit3},
{"fbiInit4", reg->fbiInit4},
{"fbiInit5", reg->fbiInit5},
{"fbiInit6", reg->fbiInit6},
{"fbiInit7", reg->fbiInit7},
//
{"backPorch", reg->backPorch},
{"videoDimensions", reg->videoDimensions},
{"hSync", reg->hSync},
{"vSync", reg->vSync},
};
for (int i = 0; i < (sizeof (registers)) / (sizeof (registers[0])); i++) {
printf("%s %08x\n", registers[i].name, registers[i].value);
}
}
int main()
{
const char * filename = "/sys/bus/pci/devices/0000:02:0a.0/resource0";
int fd = open(filename, O_RDWR | O_SYNC);
assert(fd >= 0);
uint32_t map_size = 0x4000;
off_t target_base = 0;
void * map_base = mmap(0, map_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, target_base);
assert(map_base != MAP_FAILED);
struct voodoo2_reg * reg = (struct voodoo2_reg *)map_base;
print_registers(reg);
close(fd);
}

19
pci/Makefile Normal file
View File

@ -0,0 +1,19 @@
BINARY := test_pci_module
KERNEL := /lib/modules/$(shell uname -r)/build
ARCH := x86
C_FLAGS := -Wall
KMOD_DIR := $(shell pwd)
OBJECTS := main.o
ccflags-y += $(C_FLAGS)
obj-m += $(BINARY).o
$(BINARY)-y := $(OBJECTS)
$(BINARY).ko:
make -C $(KERNEL) M=$(KMOD_DIR) modules
clean:
rm -f $(BINARY).ko

548
pci/main.c Normal file
View File

@ -0,0 +1,548 @@
#include <linux/init.h>
#include <linux/module.h>
#include <linux/pci.h>
#define VOODOO2 "voodoo2"
static struct pci_device_id voodoo2_id_table[] = {
{ PCI_DEVICE(0x121a, 0x0002) },
{ 0,}
};
MODULE_DEVICE_TABLE(pci, voodoo2_id_table);
static int voodoo2_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
static void voodoo2_remove(struct pci_dev *pdev);
/* Module registration structure */
static struct pci_driver voodoo2 = {
.name = VOODOO2,
.id_table = voodoo2_id_table,
.probe = voodoo2_probe,
.remove = voodoo2_remove
};
/* This is a "private" data structure */
/* You can store there any data that should be passed between module's functions */
struct voodoo2_priv {
volatile u32 __iomem *hwmem;
};
/* */
static int __init voodoo2_module_init(void)
{
return pci_register_driver(&voodoo2);
}
static void __exit voodoo2_module_exit(void)
{
pci_unregister_driver(&voodoo2);
}
void release_device(struct pci_dev *pdev);
void release_device(struct pci_dev *pdev)
{
/* Free memory region */
pci_release_region(pdev, pci_select_bars(pdev, IORESOURCE_MEM));
/* And disable device */
pci_disable_device(pdev);
}
struct name_int {
const char * name;
int offset;
};
#define STATUS 0x000
#define FBIINIT0 0x210
#define FBIINIT1 0x214
#define FBIINIT2 0x218
#define FBIINIT3 0x21c
#define FBIINIT4 0x200
#define FBIINIT5 0x244
#define FBIINIT6 0x248
#define FBIINIT7 0x24c
#define DACDATA 0x22c
#define LFBMODE 0x114
#define BACKPORCH 0x208
#define VIDEODIMENSIONS 0x20c
#define HSYNC 0x220
#define VSYNC 0x224
const struct name_int registers[] = {
{"status", STATUS},
{"fbiInit0", FBIINIT0},
{"fbiInit1", FBIINIT1},
{"fbiInit2", FBIINIT2},
{"fbiInit3", FBIINIT3},
{"fbiInit4", FBIINIT4},
{"fbiInit5", FBIINIT5},
{"fbiInit6", FBIINIT6},
{"fbiInit7", FBIINIT7},
//
{"backPorch", BACKPORCH},
{"videoDimensions", VIDEODIMENSIONS},
{"hSync", HSYNC},
{"vSync", VSYNC},
};
static inline void dac_data(volatile uint32_t * base, int data, int rs, int read)
{
int value = 0
| ((data & 0xff) << 0)
| ((rs & 0b111) << 8)
| ((read & 0b1) << 11);
//printk(KERN_INFO "DACDATA = %08x\n", value);
base[DACDATA / 4] = value;
}
#define DAC__RS__PIXEL_ADDRESS_WRITE 0b000 // TDV_GENDAC_WR
#define DAC__RS__PIXEL_ADDRESS_READ 0b011 // TDV_GENDAC_RD
#define DAC__RS__COLOR_VALUE 0b001 // TDV_GENDAC_LUT
#define DAC__RS__PIXEL_MASK 0b010 // TDV_GENDAC_PIXMASK
#define DAC__RS__PLL_ADDRESS_WRITE 0b100 // TDV_GENDAC_PLLWR
#define DAC__RS__PLL_PARAMETER 0b101 // TDV_GENDAC_PLLDATA
#define DAC__RS__COMMAND 0b110 // TDV_GENDAC_CMD
#define DAC__RS__PLL_ADDRESS_READ 0b111 // TDV_GENDAC_PLLRD
#define CLK0_f0_PLL 0x00
#define CLK0_f1_PLL 0x01
#define CLK0_f2_PLL 0x02
#define CLK0_f3_PLL 0x03
#define CLK0_f4_PLL 0x04
#define CLK0_f5_PLL 0x05
#define CLK0_f6_PLL 0x06
#define CLK0_f7_PLL 0x07
#define CLK1_fA_PLL 0x0A
#define CLK1_fB_PLL 0x0B
#define PLL_CONTROL 0x0E
const struct name_int dac_registers[] = {
{"CLK0_f0_PLL", CLK0_f0_PLL},
{"CLK0_f1_PLL", CLK0_f1_PLL},
{"CLK0_f2_PLL", CLK0_f2_PLL},
{"CLK0_f3_PLL", CLK0_f3_PLL},
{"CLK0_f4_PLL", CLK0_f4_PLL},
{"CLK0_f5_PLL", CLK0_f5_PLL},
{"CLK0_f6_PLL", CLK0_f6_PLL},
{"CLK0_f7_PLL", CLK0_f7_PLL},
{"CLK1_fA_PLL", CLK1_fA_PLL},
{"CLK1_fB_PLL", CLK1_fB_PLL},
{"PLL_CONTROL", PLL_CONTROL},
};
#define MAXLOOP 4096
static void
busy_wait(volatile uint32_t * base)
{
uint32_t x, cnt;
cnt = 0;
for (x = 0; x < MAXLOOP; x++) {
if (base[STATUS / 4] & (1 << 7)) // busy
cnt = 0;
else
cnt++;
if (cnt >= 5) /* Voodoo2 specs suggest at least 3 */
break;
}
if (x == MAXLOOP)
printk(KERN_INFO "wait timeout\n");
}
static inline void dac_write_8(volatile uint32_t * base, int param_address, int m)
{
dac_data(base, param_address, DAC__RS__PLL_ADDRESS_WRITE, 0);
busy_wait(base);
dac_data(base, m, DAC__RS__PLL_PARAMETER, 0);
busy_wait(base);
}
static inline void dac_write_16(volatile uint32_t * base, int param_address, int m, int n)
{
dac_data(base, param_address, DAC__RS__PLL_ADDRESS_WRITE, 0);
busy_wait(base);
dac_data(base, m, DAC__RS__PLL_PARAMETER, 0);
busy_wait(base);
dac_data(base, n, DAC__RS__PLL_PARAMETER, 0);
busy_wait(base);
}
struct m_n {
uint8_t m;
uint8_t n;
};
static inline struct m_n dac_read_16(volatile uint32_t * base, int param_address)
{
dac_data(base, param_address, DAC__RS__PLL_ADDRESS_READ, 0);
busy_wait(base);
dac_data(base, 0, DAC__RS__PLL_PARAMETER, 1);
busy_wait(base);
uint32_t m = base[FBIINIT2 / 4] & 0xff;
dac_data(base, 0, DAC__RS__PLL_PARAMETER, 1);
busy_wait(base);
uint32_t n = base[FBIINIT2 / 4] & 0xff;
return (struct m_n){ m, n };
}
/* This function is called by the kernel */
static int voodoo2_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int bar, err;
u16 vendor, device;
unsigned long mmio_start, mmio_len;
struct voodoo2_priv *drv_priv;
/* Let's read data from the PCI device configuration registers */
pci_read_config_word(pdev, PCI_VENDOR_ID, &vendor);
pci_read_config_word(pdev, PCI_DEVICE_ID, &device);
printk(KERN_INFO "vid: %04x pid: %04x\n", vendor, device);
uint32_t init_enable;
init_enable = 0
| (1 << 2) // enable writes to hardware initialization registers
| (1 << 0); // remap fbiinit2, fbiinit3 to dacread, videochecksum
pci_write_config_dword(pdev, 0x40, init_enable);
pci_read_config_dword(pdev, 0x40, &init_enable);
printk(KERN_INFO "init_enable: %08x\n", init_enable);
/* Request IO BAR */
bar = pci_select_bars(pdev, IORESOURCE_MEM);
/* Enable device memory */
err = pci_enable_device_mem(pdev);
if (err) {
printk(KERN_INFO "pci_enable_device_mem error\n");
return err;
}
/* Request memory region for the BAR */
err = pci_request_region(pdev, bar, VOODOO2);
if (err) {
printk(KERN_INFO "pci_request_region error\n");
pci_disable_device(pdev);
return err;
}
/* Get start and stop memory offsets */
mmio_start = pci_resource_start(pdev, 0);
mmio_len = pci_resource_len(pdev, 0);
printk(KERN_INFO "mmio_start %p mmio_len %p\n", (void*)mmio_start, (void*)mmio_len);
/* Allocate memory for the module private data */
drv_priv = kzalloc(sizeof(struct voodoo2_priv), GFP_KERNEL);
if (!drv_priv) {
release_device(pdev);
return -ENOMEM;
}
/* Remap BAR to the local pointer */
drv_priv->hwmem = ioremap(mmio_start, mmio_len);
if (!drv_priv->hwmem) {
release_device(pdev);
return -EIO;
}
/* Set module private data */
/* Now we can access mapped "hwmem" from the any module's function */
pci_set_drvdata(pdev, drv_priv);
for (int i = 0; i < (sizeof (registers)) / (sizeof (registers[0])); i++) {
printk(KERN_INFO "%s %08x\n",
registers[i].name,
drv_priv->hwmem[registers[i].offset / 4]);
}
//return 0;
init_enable = 0
| (1 << 0); // enable writes to hardware initialization registers
pci_write_config_dword(pdev, 0x40, init_enable);
busy_wait(drv_priv->hwmem);
drv_priv->hwmem[FBIINIT1 / 4] = (1 << 8); // 8: Video Timing Reset (0=run, 1=reset).
busy_wait(drv_priv->hwmem);
drv_priv->hwmem[FBIINIT0 / 4] = (1 << 1) // 1: Chuck Graphics Reset
| (1 << 2); // 2: Chuck FIFO Reset
busy_wait(drv_priv->hwmem);
drv_priv->hwmem[FBIINIT2 / 4] &= (1 << 22); // 22: dram refresh disable
busy_wait(drv_priv->hwmem);
init_enable = 0
| (1 << 2) // remap fbiinit2, fbiinit3 to dacread, videochecksum
| (1 << 0); // enable writes to hardware initialization registers
pci_write_config_dword(pdev, 0x40, init_enable);
busy_wait(drv_priv->hwmem);
for (int i = 0; i < (sizeof (dac_registers)) / (sizeof (dac_registers[0])); i++) {
struct m_n res = dac_read_16(drv_priv->hwmem, dac_registers[i].offset);
printk(KERN_INFO "dac read1: %s: m: %02x n: %02x\n", dac_registers[i].name, res.m, res.n);
}
/* pixel clock: 40MHz
graphics/memory clock: 44.6MHz
*/
dac_data(drv_priv->hwmem, (0b0101 << 4), DAC__RS__COMMAND, 0); //write
busy_wait(drv_priv->hwmem);
dac_data(drv_priv->hwmem, 0, DAC__RS__COMMAND, 1); //read
busy_wait(drv_priv->hwmem);
uint32_t command = drv_priv->hwmem[FBIINIT2 / 4] & 0xff;
printk(KERN_INFO "dac read2: RS__COMMAND: m: %02x\n", command);
int m = 54;
int n = 67;
dac_write_16(drv_priv->hwmem, CLK0_f0_PLL, m, n);
struct m_n res0 = dac_read_16(drv_priv->hwmem, CLK0_f0_PLL);
printk(KERN_INFO "dac read2: CLK0_f0_PLL: m: %02x n: %02x\n", res0.m, res0.n);
uint8_t pll_control = 0
| (0 << 0) // internal select: f0
| (0 << 4) // clk1 sel: fA
| (1 << 5); // enable incs: 1
dac_write_8(drv_priv->hwmem, PLL_CONTROL, pll_control);
struct m_n res = dac_read_16(drv_priv->hwmem, PLL_CONTROL);
printk(KERN_INFO "dac read2: PLL_CONTROL: m: %02x n: %02x\n", res.m, res.n);
/*
fbiInit0 00000410
4: Stall PCI enable for High Water Mark
6: (0x10) PCI FIFO Empty Entries Low Water Mark
fbiInit1 00201102
1: One wait state
8: Video Timing Reset
12: Software Blanking Enable
20: (0x2) vid_clk_2x_sel
fbiInit2 80000002
1: DRAM banking configuration (0=128Kx16 banking, 1=256Kx16 banking)
23: 0x100 Refresh_Load value
fbiInit3 00000000
fbiInit4 00000001
0: Wait state cycles for PCI read accesses (0=1 ws, 1=2 ws).
fbiInit5 00000128
fbiInit6 001e6000
fbiInit7 000000aa
*/
int x_tiles = 832 / 32;
// fbinit0
int fbiinit0 = 0
| (1 << 0) // no VGA passthrough
| (0 << 1) // no chuck graphics reset
| (0 << 2) // no chuck fifo reset
| (0 << 3) // no byte swizzle
| (1 << 4) // Stall PCI enable for High Water Mark
| (0x10 << 6) // PCI FIFO Empty Entries Low Water Mark
;
// fbiinit1
int fbiinit1 = 0
//| (1 << 1) // one wait state
| (1 << 3) // enable linear framebuffer reads
| (((x_tiles >> 1) & 0b1111) << 4) // tiles x [4:1]
| (1 << 13) // drive data output
| (1 << 14) // drive blank output
| (1 << 15) // drive hsync/vsync output
| (1 << 16) // drive dclk output
| (0 << 17) // Video timing vclk input select : vid_clk_2x
| (0x2 << 20) // Video timing vclk source select : vid_clk_2x
| (((x_tiles >> 5) & 0b1) << 24) // tiles x [5]
;
int fbiinit2 = 0
| (1 << 1) // DRAM banking configuration (0=128Kx16 banking, 1=256Kx16 banking)
| (1 << 5) // fast RAS
| (1 << 6) // DRAM_OE
| (247 << 11) // video buffer offset
| (1 << 21) // FIFO RDA
| (1 << 22) // Refresh Enable (0=disable, 1=enable). Default is 0.
| (0x30 << 23) // Refresh_Load Value.
;
int fbiinit3 = 0
| (1 << 6) // trex dis
;
int fbiinit4 = 0
| (1 << 1) // lfb rda
;
int fbiinit5 = 0
| 0x00000128
| (1 << 23)
| (1 << 24)
;
int fbiinit6 = 0
| (x_tiles & 1) << 30; // tiles x [0]
int yHeight = 600;
int xWidth = 800;
// sc->sc_videomode->vtotal - sc->sc_videomode->vsync_end
int vBackPorch = 628 - 605;
// sc->sc_videomode->htotal - sc->sc_videomode->hsync_end
int hBackPorch = 1056 - 968;
// sc->sc_videomode->vsync_end - sc->sc_videomode->vsync_start
int vSyncOn = 605 - 601;
// sc->sc_videomode->hsync_end - sc->sc_videomode->hsync_start
int hSyncOn = 968 - 840;
// sc->sc_videomode->vtotal - vsyncon
int vSyncOff = 628 - vSyncOn;
// sc->sc_videomode->htotal - hsyncon
int hSyncOff = 1056 - hSyncOn;
int hSync = 0
| (((hSyncOn - 1) & 0x1ff) << 0)
| ((hSyncOff & 0x3ff) << 16)
;
int vSync = 0
| ((vSyncOn & 0x1fff) << 0)
| ((vSyncOff & 0x1fff) << 16)
;
int backPorch = 0
| (((hBackPorch - 2) & 0x1ff) << 0)
| ((vBackPorch & 0x1ff) << 16)
;
int videoDimensions = 0
| (((xWidth - 1) & 0x7ff) << 0)
| ((yHeight & 0x7ff) << 16)
;
drv_priv->hwmem[HSYNC / 4] = hSync;
busy_wait(drv_priv->hwmem);
drv_priv->hwmem[VSYNC / 4] = vSync;
busy_wait(drv_priv->hwmem);
drv_priv->hwmem[BACKPORCH / 4] = backPorch;
busy_wait(drv_priv->hwmem);
drv_priv->hwmem[VIDEODIMENSIONS / 4] = videoDimensions;
busy_wait(drv_priv->hwmem);
int lfbMode = 0;
drv_priv->hwmem[LFBMODE / 4] = lfbMode;
busy_wait(drv_priv->hwmem);
init_enable = 0
| (1 << 0); // enable writes to hardware initialization registers
pci_write_config_dword(pdev, 0x40, init_enable);
busy_wait(drv_priv->hwmem);
drv_priv->hwmem[FBIINIT0 / 4] = fbiinit0;
drv_priv->hwmem[FBIINIT1 / 4] = fbiinit1;
drv_priv->hwmem[FBIINIT2 / 4] = fbiinit2;
drv_priv->hwmem[FBIINIT3 / 4] = fbiinit3;
drv_priv->hwmem[FBIINIT4 / 4] = fbiinit4;
drv_priv->hwmem[FBIINIT5 / 4] = fbiinit5;
drv_priv->hwmem[FBIINIT6 / 4] = fbiinit6;
busy_wait(drv_priv->hwmem);
init_enable = 0
| (1 << 1); // Enable writes to PCI FIFO
pci_write_config_dword(pdev, 0x40, init_enable);
busy_wait(drv_priv->hwmem);
pci_write_config_dword(pdev, 0xC0, 0); // VCLK_ENABLE_REG
for (int i = 0; i < (sizeof (registers)) / (sizeof (registers[0])); i++) {
printk(KERN_INFO "read2: %s %08x\n",
registers[i].name,
drv_priv->hwmem[registers[i].offset / 4]);
}
printk(KERN_INFO "hsync: %08x vsync: %08x\n", hSync, vSync);
#define rgb(r, g, b) (((r) << 11) | ((g) << 5) | ((b) << 0))
static const uint16_t panda[] __attribute__((aligned(4))) = {
//#embed "panda.rgb565.txt"
#include "panda.txt"
};
const int colors[] = {
rgb(31, 0, 0),
rgb(0, 63, 0),
rgb(0, 0, 31),
rgb(31, 63, 0), // yellow
rgb(31, 0, 31), // magenta
rgb(0, 63, 31), // cyan
rgb(31, 31, 0), // orange
rgb(31, 0, 15), // pink
rgb(0, 31, 31), // light blue
rgb(0, 63, 15), // light green
};
if (0) {
for (int y = 0; y < 600; y++) {
for (int x = 0; x < 1024; x++) {
((volatile uint16_t *)drv_priv->hwmem)[(0x0400000 / 2) + y * 1024 + x] = 0
| colors[(y / 32) % 10];
if (0) {
((volatile uint16_t *)drv_priv->hwmem)[(0x0400000 / 2) + y * 1024 + x] = 0
| rgb(0, 63, 0);
}
}
busy_wait(drv_priv->hwmem);
}
for (int y = 0; y < 600; y++) {
((volatile uint16_t *)drv_priv->hwmem)[(0x0400000 / 2) + y * 1024 + 10] = 0
| rgb(0, 0, 31);
((volatile uint16_t *)drv_priv->hwmem)[(0x0400000 / 2) + y * 1024 + 790] = 0
| rgb(0, 63, 0);
}
}
for (int y = 0; y < 600; y++) {
for (int x = 0; x < 800; x++) {
((volatile uint16_t *)drv_priv->hwmem)[(0x0400000 / 2) + y * 1024 + x] = ((uint16_t*)panda)[y * 800 + x];
}
}
return 0;
}
/* Clean up */
static void voodoo2_remove(struct pci_dev *pdev)
{
struct voodoo2_priv *drv_priv = pci_get_drvdata(pdev);
if (drv_priv) {
if (drv_priv->hwmem) {
iounmap(drv_priv->hwmem);
}
kfree(drv_priv);
}
release_device(pdev);
}
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Zachary Buhman <zack@buhman.org>");
MODULE_DESCRIPTION("Voodoo2 module");
MODULE_VERSION("0.1");
module_init(voodoo2_module_init);
module_exit(voodoo2_module_exit);

46
pci/mode.c Normal file
View File

@ -0,0 +1,46 @@
int dot_clock; /* Dot clock frequency in kHz. */
int hdisplay; // hr
int hsync_start; // hs
int hsync_end; // he
int htotal; // ht
int vdisplay; // vr
int vsync_start; // vs
int vsync_end; // ve
int vtotal; // vt
int flags; // f /* Video mode flags; see below. */
const char *name;
// name hr vr clk hs he ht vs ve vt f
// M("800x600x60",800,600,40000,840,968,1056,601,605,628,HP|VP),
/* dac write */
// 0x04 0x0a
//tdvfb_cvg_dac_write(sc, TDV_GENDAC_PLLWR, TDV_GENDAC_PLL_0);
{
// TDV_GENDAC_ADDRMASK 0x07
wreg = ((reg & TDV_GENDAC_ADDRMASK) << 8) | val;
// TDV_OFF_DAC_DATA 0x22c
tdvfb_cvg_write(sc, TDV_OFF_DAC_DATA, wreg);
tdvfb_wait(sc);
}
/* dac read */
{
// reg = TDV_GENDAC_PLLWR 0x4 "PLL Address (write mode)"
// reg = TDV_GENDAC_PLLDATA 0x5 "PLL Parameter"
// reg = TDV_GENDAC_CMD 0x6 "Command"
// reg = TDV_GENDAC_PLLRD 0x7 "PLL Address (read mode)"
// TDV_DAC_DATA_READ (1 << 11) 0x800
tdvfb_cvg_dac_write(sc, reg, TDV_DAC_DATA_READ);
/* When fbiinit2/fbiinit3 address remapping is enabled (PCI Configuration
register initEnable bit(2)=1), reading from fbiinit2 bits (7:0) returns the last
value read from the external DAC (fbiinit2 bits(31:8) are undefined when address
remapping is enabled).
*/
// TDV_OFF_DAC_READ 0x0218 fbiInit2
rv = tdvfb_cvg_read(sc, TDV_OFF_DAC_READ);
return rv & 0xFF;
}

14
pci/panda.py Normal file
View File

@ -0,0 +1,14 @@
import sys
import struct
with open(sys.argv[1], 'rb') as f:
buf = f.read()
mem = memoryview(buf)
for i in range(len(mem) // 2):
n, = struct.unpack("<H", mem[i * 2:i*2+2])
print(n, end=", ")
if i % 16 == 15:
print()

BIN
pci/panda.rgb565 Normal file

Binary file not shown.

30000
pci/panda.txt Normal file

File diff suppressed because it is too large Load Diff