smpc/input_intback.cpp: created
This commit is contained in:
parent
5b96488029
commit
8a97b38124
4
Makefile
4
Makefile
@ -1,5 +1,5 @@
|
||||
CFLAGS = -Isaturn
|
||||
OPT = -O0
|
||||
OPT = -Og
|
||||
LIBGCC = $(shell $(CC) -print-file-name=libgcc.a)
|
||||
|
||||
all: raytracing/raytracing.iso vdp2/nbg0.iso
|
||||
@ -42,6 +42,8 @@ res/mai.data: res/mai00.data res/mai01.data res/mai02.data res/mai03.data res/ma
|
||||
|
||||
vdp1/normal_sprite_animated.elf: vdp1/normal_sprite_animated.o res/mai.data.o res/mai.data.pal.o
|
||||
|
||||
smpc/input_intback.elf: smpc/input_intback.o sh/lib1funcs.o
|
||||
|
||||
# clean
|
||||
clean: clean-sh
|
||||
clean-sh:
|
||||
|
415
smpc/input_intback.cpp
Normal file
415
smpc/input_intback.cpp
Normal file
@ -0,0 +1,415 @@
|
||||
#include <stdint.h>
|
||||
#include "vdp1.h"
|
||||
#include "vdp2.h"
|
||||
#include "smpc.h"
|
||||
#include "sh2.h"
|
||||
#include "scu.h"
|
||||
|
||||
struct color {
|
||||
uint8_t r;
|
||||
uint8_t g;
|
||||
uint8_t b;
|
||||
};
|
||||
|
||||
const static color colors[16] = {
|
||||
{255, 255, 255}, // (SPD / transparent) 0
|
||||
{0, 255, 255}, // I (cyan) 1
|
||||
{255, 255, 0}, // O (yellow) 2
|
||||
{128, 0, 128}, // T (purple) 3
|
||||
{0, 255, 0}, // S (green) 4
|
||||
{0, 0, 255}, // J (blue) 5
|
||||
{255, 0, 0}, // Z (red) 6
|
||||
{255, 128, 0}, // L (orange) 7
|
||||
{0}, // 8
|
||||
{0}, // 9
|
||||
{0}, // 10 (a)
|
||||
{0}, // 11 (b)
|
||||
{0}, // 12 (c)
|
||||
{0}, // 13 (d)
|
||||
{0}, // 14 (e)
|
||||
{250, 128, 114} // (ECD) f
|
||||
};
|
||||
|
||||
inline constexpr uint16_t rgb15(const color& color)
|
||||
{
|
||||
return ((color.b >> 3) << 10) // blue
|
||||
| ((color.g >> 3) << 5 ) // green
|
||||
| ((color.r >> 3) << 0 ); // red
|
||||
}
|
||||
|
||||
uint32_t color_lookup_table(const uint32_t top)
|
||||
{
|
||||
// "The size of a color lookup table is 20H (32) bytes"
|
||||
// (assume top is already aligned to 0x20)
|
||||
const uint32_t table_address = top - 0x20;
|
||||
|
||||
// "The color lookup table defines the respective color codes of 16 colors in
|
||||
// VRAM as 16-bit data"
|
||||
uint16_t * table = &vdp1.vram.u16[(table_address / 2)];
|
||||
|
||||
uint32_t buf_ix = 0;
|
||||
for (uint32_t i = 0; i < 16; i++) {
|
||||
// there is a typo in "5.2 Color Lookup Tables" "If RGB code, MSB = 0"
|
||||
// should be "MSB = 1". The "MSB = 0" claim is correctly contradicted later.
|
||||
|
||||
table[i] = 1 << 15 | rgb15(colors[i]);
|
||||
// _mai_data_pal is rgb24, 3 bytes per color
|
||||
buf_ix += 3;
|
||||
}
|
||||
|
||||
return table_address;
|
||||
}
|
||||
|
||||
template <class T>
|
||||
inline constexpr T round(const T n)
|
||||
{
|
||||
return (n + 0x20 - 1) & (-0x20);
|
||||
}
|
||||
|
||||
constexpr uint32_t sprite_stride = 16;
|
||||
constexpr uint32_t sprite_height = 10;
|
||||
constexpr uint32_t sprite_width = 10;
|
||||
|
||||
uint32_t character_pattern_table(const uint32_t top, int color)
|
||||
{
|
||||
constexpr uint32_t canvas_size = sprite_stride * 10;
|
||||
// 1 pixel = 4 bits
|
||||
constexpr uint32_t table_size = round(canvas_size / 2);
|
||||
const uint32_t table_address = top - table_size;
|
||||
|
||||
uint32_t * table = &vdp1.vram.u32[(table_address / 4)];
|
||||
|
||||
// `table_size` is in bytes; divide by two to get uint16_t indicies.
|
||||
uint32_t table_ix = 0;
|
||||
for (uint32_t row = 0; row < sprite_height; row++) {
|
||||
table[table_ix++] =
|
||||
(color << 28) | (color << 24) | (color << 20) | (color << 16)
|
||||
| (color << 12) | (color << 8 ) | (color << 4 ) | (color << 0 );
|
||||
|
||||
// 0xf is the "end code" for 4-bit row/pixel data; there must be two
|
||||
// bit-consecutive codes for vdp2 to interpret it as an end code.
|
||||
constexpr int ecd = 0xf;
|
||||
table[table_ix++] =
|
||||
(color << 28) | (color << 24) | (ecd << 20) | (ecd << 16);
|
||||
}
|
||||
|
||||
return table_address;
|
||||
}
|
||||
|
||||
static inline const reg8& get_oreg(uint32_t ix) {
|
||||
switch (ix & 31) {
|
||||
default:
|
||||
case 0: return smpc.reg.OREG0;
|
||||
case 1: return smpc.reg.OREG1;
|
||||
case 2: return smpc.reg.OREG2;
|
||||
case 3: return smpc.reg.OREG3;
|
||||
case 4: return smpc.reg.OREG4;
|
||||
case 5: return smpc.reg.OREG5;
|
||||
case 6: return smpc.reg.OREG6;
|
||||
case 7: return smpc.reg.OREG7;
|
||||
case 8: return smpc.reg.OREG8;
|
||||
case 9: return smpc.reg.OREG9;
|
||||
case 10: return smpc.reg.OREG10;
|
||||
case 11: return smpc.reg.OREG11;
|
||||
case 12: return smpc.reg.OREG12;
|
||||
case 13: return smpc.reg.OREG13;
|
||||
case 14: return smpc.reg.OREG14;
|
||||
case 15: return smpc.reg.OREG15;
|
||||
case 16: return smpc.reg.OREG16;
|
||||
case 17: return smpc.reg.OREG17;
|
||||
case 18: return smpc.reg.OREG18;
|
||||
case 19: return smpc.reg.OREG19;
|
||||
case 20: return smpc.reg.OREG20;
|
||||
case 21: return smpc.reg.OREG21;
|
||||
case 22: return smpc.reg.OREG22;
|
||||
case 23: return smpc.reg.OREG23;
|
||||
case 24: return smpc.reg.OREG24;
|
||||
case 25: return smpc.reg.OREG25;
|
||||
case 26: return smpc.reg.OREG26;
|
||||
case 27: return smpc.reg.OREG27;
|
||||
case 28: return smpc.reg.OREG28;
|
||||
case 29: return smpc.reg.OREG29;
|
||||
case 30: return smpc.reg.OREG30;
|
||||
case 31: return smpc.reg.OREG31;
|
||||
}
|
||||
}
|
||||
|
||||
struct controller_state {
|
||||
uint8_t up;
|
||||
uint8_t down;
|
||||
uint8_t left;
|
||||
uint8_t right;
|
||||
};
|
||||
|
||||
#define assert(n) if ((n) == 0) while (1);
|
||||
|
||||
enum intback_fsm {
|
||||
PORT_STATUS = 0,
|
||||
PERIPHERAL_ID,
|
||||
DATA1,
|
||||
DATA2,
|
||||
FSM_NEXT,
|
||||
};
|
||||
|
||||
struct intback_state {
|
||||
int fsm;
|
||||
int controller_ix;
|
||||
int port_ix;
|
||||
controller_state controller[2];
|
||||
};
|
||||
|
||||
static intback_state intback;
|
||||
static int oreg_ix;
|
||||
|
||||
struct xy {
|
||||
int x;
|
||||
int y;
|
||||
};
|
||||
|
||||
static xy foo[2] = {
|
||||
{100, 100},
|
||||
{200, 100}
|
||||
};
|
||||
|
||||
void smpc_int(void) __attribute__ ((interrupt_handler));
|
||||
void smpc_int(void) {
|
||||
scu.reg.IST &= ~(IST__SMPC);
|
||||
scu.reg.IMS = ~(IMS__SMPC | IMS__V_BLANK_IN);
|
||||
|
||||
if ((smpc.reg.SR & SR__PDL) != 0) {
|
||||
// PDL == 1; 1st peripheral data
|
||||
oreg_ix = 0;
|
||||
intback.controller_ix = 0;
|
||||
intback.port_ix = 0;
|
||||
intback.fsm = PORT_STATUS;
|
||||
}
|
||||
|
||||
int port_connected = 0;
|
||||
|
||||
/*
|
||||
This intback handling is oversimplified:
|
||||
|
||||
- up to 2 controllers may be connected
|
||||
- controller port 1 must be connected (could relax this)
|
||||
- both controllers must be "digital pad" controllers
|
||||
*/
|
||||
while (oreg_ix < 31) {
|
||||
const reg8& oreg = get_oreg(oreg_ix++);
|
||||
switch (intback.fsm++) {
|
||||
case PORT_STATUS:
|
||||
port_connected = (PORT_STATUS__CONNECTORS(oreg) == 1);
|
||||
break;
|
||||
case PERIPHERAL_ID:
|
||||
if (port_connected) {
|
||||
assert(PERIPHERAL_ID__IS_DIGITAL_PAD(oreg));
|
||||
assert(PERIPHERAL_ID__DATA_SIZE(oreg) == 2);
|
||||
}
|
||||
break;
|
||||
case DATA1:
|
||||
if (port_connected) {
|
||||
controller_state& c = intback.controller[intback.controller_ix];
|
||||
c.right = (DIGITAL__1__RIGHT & oreg) == 0;
|
||||
c.left = (DIGITAL__1__LEFT & oreg) == 0;
|
||||
c.down = (DIGITAL__1__DOWN & oreg) == 0;
|
||||
c.up = (DIGITAL__1__UP & oreg) == 0;
|
||||
}
|
||||
break;
|
||||
case DATA2:
|
||||
// ignore data2
|
||||
break;
|
||||
}
|
||||
|
||||
if (intback.fsm == FSM_NEXT) {
|
||||
if (intback.port_ix == 1)
|
||||
break;
|
||||
else {
|
||||
intback.port_ix++;
|
||||
intback.controller_ix++;
|
||||
intback.fsm = PORT_STATUS;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if ((smpc.reg.SR & SR__NPE) != 0) {
|
||||
smpc.reg.IREG0 = INTBACK__IREG0__CONTINUE;
|
||||
} else {
|
||||
smpc.reg.IREG0 = INTBACK__IREG0__BREAK;
|
||||
}
|
||||
}
|
||||
|
||||
void v_blank_in_int(void) __attribute__ ((interrupt_handler));
|
||||
void v_blank_in_int() {
|
||||
scu.reg.IST &= ~(IST__V_BLANK_IN);
|
||||
scu.reg.IMS = ~(IMS__SMPC | IMS__V_BLANK_IN);
|
||||
|
||||
sh2.reg.FRC.H = 0;
|
||||
sh2.reg.FRC.L = 0;
|
||||
sh2.reg.FTCSR = 0; // clear flags
|
||||
|
||||
for (int i = 0; i < 2; i++) {
|
||||
const controller_state& c = intback.controller[i];
|
||||
if (c.left) vdp1.vram.cmd[2 + i].XA = --foo[i].x;
|
||||
if (c.right) vdp1.vram.cmd[2 + i].XA = ++foo[i].x;
|
||||
if (c.up) vdp1.vram.cmd[2 + i].YA = --foo[i].y;
|
||||
if (c.down) vdp1.vram.cmd[2 + i].YA = ++foo[i].y;
|
||||
}
|
||||
|
||||
// wait 300us, as specified in the SMPC manual.
|
||||
// It appears reading FRC.H is mandatory and *must* occur before FRC.L on real
|
||||
// hardware.
|
||||
while ((sh2.reg.FTCSR & FTCSR__OVF) == 0 && sh2.reg.FRC.H == 0 && sh2.reg.FRC.L < 63);
|
||||
|
||||
if ((vdp2.reg.TVSTAT & TVSTAT__VBLANK) != 0) {
|
||||
// on real hardware, SF contains uninitialized garbage bits other than the
|
||||
// lsb.
|
||||
while ((smpc.reg.SF & 1) != 0);
|
||||
|
||||
smpc.reg.SF = 0;
|
||||
|
||||
smpc.reg.IREG0 = INTBACK__IREG0__STATUS_DISABLE;
|
||||
smpc.reg.IREG1 = ( INTBACK__IREG1__PERIPHERAL_DATA_ENABLE
|
||||
| INTBACK__IREG1__PORT2_15BYTE
|
||||
| INTBACK__IREG1__PORT1_15BYTE
|
||||
);
|
||||
smpc.reg.IREG2 = INTBACK__IREG2__MAGIC;
|
||||
|
||||
smpc.reg.COMREG = COMREG__INTBACK;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void v_blank_in() {
|
||||
/*
|
||||
v
|
||||
_____
|
||||
____| |____
|
||||
|
||||
*/
|
||||
while ((vdp2.reg.TVSTAT & TVSTAT__VBLANK) != 0);
|
||||
while ((vdp2.reg.TVSTAT & TVSTAT__VBLANK) == 0);
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
uint32_t color_address, character_address[16];
|
||||
uint32_t top = (sizeof (union vdp1_vram));
|
||||
top = color_address = color_lookup_table(top);
|
||||
top = character_address[0] = character_pattern_table(top, 1);
|
||||
top = character_address[1] = character_pattern_table(top, 2);
|
||||
|
||||
// wait for the beginning of a V blank
|
||||
v_blank_in();
|
||||
|
||||
// DISP: Please make sure to change this bit from 0 to 1 during V blank.
|
||||
vdp2.reg.TVMD = ( TVMD__DISP | TVMD__LSMD__NON_INTERLACE
|
||||
| TVMD__VRESO__240 | TVMD__HRESO__NORMAL_320);
|
||||
|
||||
// disable all VDP2 backgrounds (e.g: the Sega bios logo)
|
||||
vdp2.reg.BGON = 0;
|
||||
|
||||
// zeroize BACK color
|
||||
vdp2.reg.BKTAU = 0;
|
||||
vdp2.reg.BKTAL = 0;
|
||||
vdp2.vram.u16[0] = 0;
|
||||
|
||||
// VDP2 User's Manual:
|
||||
// "When sprite data is in an RGB format, sprite register 0 is selected"
|
||||
// "When the value of a priority number is 0h, it is read as transparent"
|
||||
//
|
||||
// From a VDP2 perspective: in VDP1 16-color lookup table mode, VDP1 is still
|
||||
// sending RGB data to VDP2. This sprite color data as configured in
|
||||
// `color_lookup_table` from a VDP2 priority perspective uses sprite register 0.
|
||||
//
|
||||
// The power-on value of PRISA is zero. Set the priority for sprite register 0
|
||||
// to some number greater than zero, so that the color data is not interpreted
|
||||
// as "transparent".
|
||||
vdp2.reg.PRISA = PRISA__S0PRIN(1); // Sprite register 0 PRIority Number
|
||||
|
||||
/* TVM settings must be performed from the second H-blank IN interrupt after the
|
||||
V-blank IN interrupt to the H-blank IN interrupt immediately after the V-blank
|
||||
OUT interrupt. */
|
||||
// "normal" display resolution, 16 bits per pixel, 512x256 framebuffer
|
||||
vdp1.reg.TVMR = TVMR__TVM__NORMAL;
|
||||
|
||||
// swap framebuffers every 1 cycle; non-interlace
|
||||
vdp1.reg.FBCR = 0;
|
||||
|
||||
// during a framebuffer erase cycle, write the color "black" to each pixel
|
||||
constexpr uint16_t black = 0x0000;
|
||||
vdp1.reg.EWDR = black;
|
||||
|
||||
// the EWLR/EWRR macros use somewhat nontrivial math for the X coordinates
|
||||
// erase upper-left coordinate
|
||||
vdp1.reg.EWLR = EWLR__16BPP_X1(0) | EWLR__Y1(0);
|
||||
|
||||
// erase lower-right coordinate
|
||||
vdp1.reg.EWRR = EWRR__16BPP_X3(319) | EWRR__Y3(239);
|
||||
|
||||
vdp1.vram.cmd[0].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__SYSTEM_CLIP_COORDINATES;
|
||||
vdp1.vram.cmd[0].LINK = 0;
|
||||
vdp1.vram.cmd[0].XC = 319;
|
||||
vdp1.vram.cmd[0].YC = 239;
|
||||
|
||||
vdp1.vram.cmd[1].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__LOCAL_COORDINATE;
|
||||
vdp1.vram.cmd[1].LINK = 0;
|
||||
vdp1.vram.cmd[1].XA = 0;
|
||||
vdp1.vram.cmd[1].YA = 0;
|
||||
|
||||
vdp1.vram.cmd[2].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__NORMAL_SPRITE;
|
||||
vdp1.vram.cmd[2].LINK = 0;
|
||||
// The "end code" is 0xf, which is being used in the mai sprite palette. If
|
||||
// both transparency and end codes are enabled, it seems there are only 14
|
||||
// usable colors in the 4-bit color mode.
|
||||
vdp1.vram.cmd[2].PMOD = PMOD__COLOR_MODE__LOOKUP_TABLE_16;
|
||||
// It appears Kronos does not correctly calculate the color address in the
|
||||
// VDP1 debugger. Kronos will report FFFC when the actual color table address
|
||||
// in this example is 7FFE0.
|
||||
vdp1.vram.cmd[2].COLR = COLR__ADDRESS(color_address); // non-palettized (rgb15) color data
|
||||
vdp1.vram.cmd[2].SRCA = SRCA(character_address[0]);
|
||||
vdp1.vram.cmd[2].SIZE = SIZE__X(sprite_stride) | SIZE__Y(sprite_height);
|
||||
vdp1.vram.cmd[2].XA = foo[0].x;
|
||||
vdp1.vram.cmd[2].YA = foo[0].y;
|
||||
|
||||
vdp1.vram.cmd[3].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__NORMAL_SPRITE;
|
||||
vdp1.vram.cmd[3].LINK = 0;
|
||||
// The "end code" is 0xf, which is being used in the mai sprite palette. If
|
||||
// both transparency and end codes are enabled, it seems there are only 14
|
||||
// usable colors in the 4-bit color mode.
|
||||
vdp1.vram.cmd[3].PMOD = PMOD__COLOR_MODE__LOOKUP_TABLE_16;
|
||||
// It appears Kronos does not correctly calculate the color address in the
|
||||
// VDP1 debugger. Kronos will report FFFC when the actual color table address
|
||||
// in this example is 7FFE0.
|
||||
vdp1.vram.cmd[3].COLR = COLR__ADDRESS(color_address); // non-palettized (rgb15) color data
|
||||
vdp1.vram.cmd[3].SRCA = SRCA(character_address[1]);
|
||||
vdp1.vram.cmd[3].SIZE = SIZE__X(sprite_stride) | SIZE__Y(sprite_height);
|
||||
vdp1.vram.cmd[3].XA = foo[1].x;
|
||||
vdp1.vram.cmd[3].YA = foo[1].y;
|
||||
|
||||
vdp1.vram.cmd[4].CTRL = CTRL__END;
|
||||
|
||||
// start drawing (execute the command list) on every frame
|
||||
vdp1.reg.PTMR = PTMR__PTM__FRAME_CHANGE;
|
||||
|
||||
// free-running timer
|
||||
sh2.reg.TCR = TCR__CKS__INTERNAL_DIV128;
|
||||
sh2.reg.FTCSR = 0;
|
||||
|
||||
// initialize smpc
|
||||
smpc.reg.DDR1 = 0; // INPUT
|
||||
smpc.reg.DDR2 = 0; // INPUT
|
||||
smpc.reg.IOSEL = 0; // SMPC control
|
||||
smpc.reg.EXLE = 0; //
|
||||
|
||||
// interrupts
|
||||
sh2_vec[SCU_VEC__SMPC] = (u32)(&smpc_int);
|
||||
sh2_vec[SCU_VEC__V_BLANK_IN] = (u32)(&v_blank_in_int);
|
||||
|
||||
scu.reg.IST = 0;
|
||||
scu.reg.IMS = ~(IMS__SMPC | IMS__V_BLANK_IN);
|
||||
}
|
||||
|
||||
extern "C"
|
||||
void start(void)
|
||||
{
|
||||
main();
|
||||
while (1);
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user