diff --git a/Makefile b/Makefile index 27255b3..c67521b 100644 --- a/Makefile +++ b/Makefile @@ -1,5 +1,5 @@ CFLAGS = -Isaturn -OPT = -O0 +OPT = -Og LIBGCC = $(shell $(CC) -print-file-name=libgcc.a) all: raytracing/raytracing.iso vdp2/nbg0.iso @@ -42,6 +42,8 @@ res/mai.data: res/mai00.data res/mai01.data res/mai02.data res/mai03.data res/ma vdp1/normal_sprite_animated.elf: vdp1/normal_sprite_animated.o res/mai.data.o res/mai.data.pal.o +smpc/input_intback.elf: smpc/input_intback.o sh/lib1funcs.o + # clean clean: clean-sh clean-sh: diff --git a/smpc/input_intback.cpp b/smpc/input_intback.cpp new file mode 100644 index 0000000..463b1ce --- /dev/null +++ b/smpc/input_intback.cpp @@ -0,0 +1,415 @@ +#include +#include "vdp1.h" +#include "vdp2.h" +#include "smpc.h" +#include "sh2.h" +#include "scu.h" + +struct color { + uint8_t r; + uint8_t g; + uint8_t b; +}; + +const static color colors[16] = { + {255, 255, 255}, // (SPD / transparent) 0 + {0, 255, 255}, // I (cyan) 1 + {255, 255, 0}, // O (yellow) 2 + {128, 0, 128}, // T (purple) 3 + {0, 255, 0}, // S (green) 4 + {0, 0, 255}, // J (blue) 5 + {255, 0, 0}, // Z (red) 6 + {255, 128, 0}, // L (orange) 7 + {0}, // 8 + {0}, // 9 + {0}, // 10 (a) + {0}, // 11 (b) + {0}, // 12 (c) + {0}, // 13 (d) + {0}, // 14 (e) + {250, 128, 114} // (ECD) f +}; + +inline constexpr uint16_t rgb15(const color& color) +{ + return ((color.b >> 3) << 10) // blue + | ((color.g >> 3) << 5 ) // green + | ((color.r >> 3) << 0 ); // red +} + +uint32_t color_lookup_table(const uint32_t top) +{ + // "The size of a color lookup table is 20H (32) bytes" + // (assume top is already aligned to 0x20) + const uint32_t table_address = top - 0x20; + + // "The color lookup table defines the respective color codes of 16 colors in + // VRAM as 16-bit data" + uint16_t * table = &vdp1.vram.u16[(table_address / 2)]; + + uint32_t buf_ix = 0; + for (uint32_t i = 0; i < 16; i++) { + // there is a typo in "5.2 Color Lookup Tables" "If RGB code, MSB = 0" + // should be "MSB = 1". The "MSB = 0" claim is correctly contradicted later. + + table[i] = 1 << 15 | rgb15(colors[i]); + // _mai_data_pal is rgb24, 3 bytes per color + buf_ix += 3; + } + + return table_address; +} + +template +inline constexpr T round(const T n) +{ + return (n + 0x20 - 1) & (-0x20); +} + +constexpr uint32_t sprite_stride = 16; +constexpr uint32_t sprite_height = 10; +constexpr uint32_t sprite_width = 10; + +uint32_t character_pattern_table(const uint32_t top, int color) +{ + constexpr uint32_t canvas_size = sprite_stride * 10; + // 1 pixel = 4 bits + constexpr uint32_t table_size = round(canvas_size / 2); + const uint32_t table_address = top - table_size; + + uint32_t * table = &vdp1.vram.u32[(table_address / 4)]; + + // `table_size` is in bytes; divide by two to get uint16_t indicies. + uint32_t table_ix = 0; + for (uint32_t row = 0; row < sprite_height; row++) { + table[table_ix++] = + (color << 28) | (color << 24) | (color << 20) | (color << 16) + | (color << 12) | (color << 8 ) | (color << 4 ) | (color << 0 ); + + // 0xf is the "end code" for 4-bit row/pixel data; there must be two + // bit-consecutive codes for vdp2 to interpret it as an end code. + constexpr int ecd = 0xf; + table[table_ix++] = + (color << 28) | (color << 24) | (ecd << 20) | (ecd << 16); + } + + return table_address; +} + +static inline const reg8& get_oreg(uint32_t ix) { + switch (ix & 31) { + default: + case 0: return smpc.reg.OREG0; + case 1: return smpc.reg.OREG1; + case 2: return smpc.reg.OREG2; + case 3: return smpc.reg.OREG3; + case 4: return smpc.reg.OREG4; + case 5: return smpc.reg.OREG5; + case 6: return smpc.reg.OREG6; + case 7: return smpc.reg.OREG7; + case 8: return smpc.reg.OREG8; + case 9: return smpc.reg.OREG9; + case 10: return smpc.reg.OREG10; + case 11: return smpc.reg.OREG11; + case 12: return smpc.reg.OREG12; + case 13: return smpc.reg.OREG13; + case 14: return smpc.reg.OREG14; + case 15: return smpc.reg.OREG15; + case 16: return smpc.reg.OREG16; + case 17: return smpc.reg.OREG17; + case 18: return smpc.reg.OREG18; + case 19: return smpc.reg.OREG19; + case 20: return smpc.reg.OREG20; + case 21: return smpc.reg.OREG21; + case 22: return smpc.reg.OREG22; + case 23: return smpc.reg.OREG23; + case 24: return smpc.reg.OREG24; + case 25: return smpc.reg.OREG25; + case 26: return smpc.reg.OREG26; + case 27: return smpc.reg.OREG27; + case 28: return smpc.reg.OREG28; + case 29: return smpc.reg.OREG29; + case 30: return smpc.reg.OREG30; + case 31: return smpc.reg.OREG31; + } +} + +struct controller_state { + uint8_t up; + uint8_t down; + uint8_t left; + uint8_t right; +}; + +#define assert(n) if ((n) == 0) while (1); + +enum intback_fsm { + PORT_STATUS = 0, + PERIPHERAL_ID, + DATA1, + DATA2, + FSM_NEXT, +}; + +struct intback_state { + int fsm; + int controller_ix; + int port_ix; + controller_state controller[2]; +}; + +static intback_state intback; +static int oreg_ix; + +struct xy { + int x; + int y; +}; + +static xy foo[2] = { + {100, 100}, + {200, 100} +}; + +void smpc_int(void) __attribute__ ((interrupt_handler)); +void smpc_int(void) { + scu.reg.IST &= ~(IST__SMPC); + scu.reg.IMS = ~(IMS__SMPC | IMS__V_BLANK_IN); + + if ((smpc.reg.SR & SR__PDL) != 0) { + // PDL == 1; 1st peripheral data + oreg_ix = 0; + intback.controller_ix = 0; + intback.port_ix = 0; + intback.fsm = PORT_STATUS; + } + + int port_connected = 0; + + /* + This intback handling is oversimplified: + + - up to 2 controllers may be connected + - controller port 1 must be connected (could relax this) + - both controllers must be "digital pad" controllers + */ + while (oreg_ix < 31) { + const reg8& oreg = get_oreg(oreg_ix++); + switch (intback.fsm++) { + case PORT_STATUS: + port_connected = (PORT_STATUS__CONNECTORS(oreg) == 1); + break; + case PERIPHERAL_ID: + if (port_connected) { + assert(PERIPHERAL_ID__IS_DIGITAL_PAD(oreg)); + assert(PERIPHERAL_ID__DATA_SIZE(oreg) == 2); + } + break; + case DATA1: + if (port_connected) { + controller_state& c = intback.controller[intback.controller_ix]; + c.right = (DIGITAL__1__RIGHT & oreg) == 0; + c.left = (DIGITAL__1__LEFT & oreg) == 0; + c.down = (DIGITAL__1__DOWN & oreg) == 0; + c.up = (DIGITAL__1__UP & oreg) == 0; + } + break; + case DATA2: + // ignore data2 + break; + } + + if (intback.fsm == FSM_NEXT) { + if (intback.port_ix == 1) + break; + else { + intback.port_ix++; + intback.controller_ix++; + intback.fsm = PORT_STATUS; + } + } + } + + if ((smpc.reg.SR & SR__NPE) != 0) { + smpc.reg.IREG0 = INTBACK__IREG0__CONTINUE; + } else { + smpc.reg.IREG0 = INTBACK__IREG0__BREAK; + } +} + +void v_blank_in_int(void) __attribute__ ((interrupt_handler)); +void v_blank_in_int() { + scu.reg.IST &= ~(IST__V_BLANK_IN); + scu.reg.IMS = ~(IMS__SMPC | IMS__V_BLANK_IN); + + sh2.reg.FRC.H = 0; + sh2.reg.FRC.L = 0; + sh2.reg.FTCSR = 0; // clear flags + + for (int i = 0; i < 2; i++) { + const controller_state& c = intback.controller[i]; + if (c.left) vdp1.vram.cmd[2 + i].XA = --foo[i].x; + if (c.right) vdp1.vram.cmd[2 + i].XA = ++foo[i].x; + if (c.up) vdp1.vram.cmd[2 + i].YA = --foo[i].y; + if (c.down) vdp1.vram.cmd[2 + i].YA = ++foo[i].y; + } + + // wait 300us, as specified in the SMPC manual. + // It appears reading FRC.H is mandatory and *must* occur before FRC.L on real + // hardware. + while ((sh2.reg.FTCSR & FTCSR__OVF) == 0 && sh2.reg.FRC.H == 0 && sh2.reg.FRC.L < 63); + + if ((vdp2.reg.TVSTAT & TVSTAT__VBLANK) != 0) { + // on real hardware, SF contains uninitialized garbage bits other than the + // lsb. + while ((smpc.reg.SF & 1) != 0); + + smpc.reg.SF = 0; + + smpc.reg.IREG0 = INTBACK__IREG0__STATUS_DISABLE; + smpc.reg.IREG1 = ( INTBACK__IREG1__PERIPHERAL_DATA_ENABLE + | INTBACK__IREG1__PORT2_15BYTE + | INTBACK__IREG1__PORT1_15BYTE + ); + smpc.reg.IREG2 = INTBACK__IREG2__MAGIC; + + smpc.reg.COMREG = COMREG__INTBACK; + } +} + +static inline void v_blank_in() { + /* + v + _____ + ____| |____ + + */ + while ((vdp2.reg.TVSTAT & TVSTAT__VBLANK) != 0); + while ((vdp2.reg.TVSTAT & TVSTAT__VBLANK) == 0); +} + +void main() +{ + uint32_t color_address, character_address[16]; + uint32_t top = (sizeof (union vdp1_vram)); + top = color_address = color_lookup_table(top); + top = character_address[0] = character_pattern_table(top, 1); + top = character_address[1] = character_pattern_table(top, 2); + + // wait for the beginning of a V blank + v_blank_in(); + + // DISP: Please make sure to change this bit from 0 to 1 during V blank. + vdp2.reg.TVMD = ( TVMD__DISP | TVMD__LSMD__NON_INTERLACE + | TVMD__VRESO__240 | TVMD__HRESO__NORMAL_320); + + // disable all VDP2 backgrounds (e.g: the Sega bios logo) + vdp2.reg.BGON = 0; + + // zeroize BACK color + vdp2.reg.BKTAU = 0; + vdp2.reg.BKTAL = 0; + vdp2.vram.u16[0] = 0; + + // VDP2 User's Manual: + // "When sprite data is in an RGB format, sprite register 0 is selected" + // "When the value of a priority number is 0h, it is read as transparent" + // + // From a VDP2 perspective: in VDP1 16-color lookup table mode, VDP1 is still + // sending RGB data to VDP2. This sprite color data as configured in + // `color_lookup_table` from a VDP2 priority perspective uses sprite register 0. + // + // The power-on value of PRISA is zero. Set the priority for sprite register 0 + // to some number greater than zero, so that the color data is not interpreted + // as "transparent". + vdp2.reg.PRISA = PRISA__S0PRIN(1); // Sprite register 0 PRIority Number + + /* TVM settings must be performed from the second H-blank IN interrupt after the + V-blank IN interrupt to the H-blank IN interrupt immediately after the V-blank + OUT interrupt. */ + // "normal" display resolution, 16 bits per pixel, 512x256 framebuffer + vdp1.reg.TVMR = TVMR__TVM__NORMAL; + + // swap framebuffers every 1 cycle; non-interlace + vdp1.reg.FBCR = 0; + + // during a framebuffer erase cycle, write the color "black" to each pixel + constexpr uint16_t black = 0x0000; + vdp1.reg.EWDR = black; + + // the EWLR/EWRR macros use somewhat nontrivial math for the X coordinates + // erase upper-left coordinate + vdp1.reg.EWLR = EWLR__16BPP_X1(0) | EWLR__Y1(0); + + // erase lower-right coordinate + vdp1.reg.EWRR = EWRR__16BPP_X3(319) | EWRR__Y3(239); + + vdp1.vram.cmd[0].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__SYSTEM_CLIP_COORDINATES; + vdp1.vram.cmd[0].LINK = 0; + vdp1.vram.cmd[0].XC = 319; + vdp1.vram.cmd[0].YC = 239; + + vdp1.vram.cmd[1].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__LOCAL_COORDINATE; + vdp1.vram.cmd[1].LINK = 0; + vdp1.vram.cmd[1].XA = 0; + vdp1.vram.cmd[1].YA = 0; + + vdp1.vram.cmd[2].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__NORMAL_SPRITE; + vdp1.vram.cmd[2].LINK = 0; + // The "end code" is 0xf, which is being used in the mai sprite palette. If + // both transparency and end codes are enabled, it seems there are only 14 + // usable colors in the 4-bit color mode. + vdp1.vram.cmd[2].PMOD = PMOD__COLOR_MODE__LOOKUP_TABLE_16; + // It appears Kronos does not correctly calculate the color address in the + // VDP1 debugger. Kronos will report FFFC when the actual color table address + // in this example is 7FFE0. + vdp1.vram.cmd[2].COLR = COLR__ADDRESS(color_address); // non-palettized (rgb15) color data + vdp1.vram.cmd[2].SRCA = SRCA(character_address[0]); + vdp1.vram.cmd[2].SIZE = SIZE__X(sprite_stride) | SIZE__Y(sprite_height); + vdp1.vram.cmd[2].XA = foo[0].x; + vdp1.vram.cmd[2].YA = foo[0].y; + + vdp1.vram.cmd[3].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__NORMAL_SPRITE; + vdp1.vram.cmd[3].LINK = 0; + // The "end code" is 0xf, which is being used in the mai sprite palette. If + // both transparency and end codes are enabled, it seems there are only 14 + // usable colors in the 4-bit color mode. + vdp1.vram.cmd[3].PMOD = PMOD__COLOR_MODE__LOOKUP_TABLE_16; + // It appears Kronos does not correctly calculate the color address in the + // VDP1 debugger. Kronos will report FFFC when the actual color table address + // in this example is 7FFE0. + vdp1.vram.cmd[3].COLR = COLR__ADDRESS(color_address); // non-palettized (rgb15) color data + vdp1.vram.cmd[3].SRCA = SRCA(character_address[1]); + vdp1.vram.cmd[3].SIZE = SIZE__X(sprite_stride) | SIZE__Y(sprite_height); + vdp1.vram.cmd[3].XA = foo[1].x; + vdp1.vram.cmd[3].YA = foo[1].y; + + vdp1.vram.cmd[4].CTRL = CTRL__END; + + // start drawing (execute the command list) on every frame + vdp1.reg.PTMR = PTMR__PTM__FRAME_CHANGE; + + // free-running timer + sh2.reg.TCR = TCR__CKS__INTERNAL_DIV128; + sh2.reg.FTCSR = 0; + + // initialize smpc + smpc.reg.DDR1 = 0; // INPUT + smpc.reg.DDR2 = 0; // INPUT + smpc.reg.IOSEL = 0; // SMPC control + smpc.reg.EXLE = 0; // + + // interrupts + sh2_vec[SCU_VEC__SMPC] = (u32)(&smpc_int); + sh2_vec[SCU_VEC__V_BLANK_IN] = (u32)(&v_blank_in_int); + + scu.reg.IST = 0; + scu.reg.IMS = ~(IMS__SMPC | IMS__V_BLANK_IN); +} + +extern "C" +void start(void) +{ + main(); + while (1); +}