dreamcast/math/mat3x3.hpp

204 lines
4.5 KiB
C++

#pragma once
#include <utility>
#include "vec3.hpp"
template <int R, int C, typename T>
struct mat;
//
// mat3x3
//
template <typename T>
struct mat<3, 3, T>
{
typedef vec<3, T> row_type;
typedef vec<3, T> col_type;
private:
row_type value[3];
public:
inline constexpr mat();
inline constexpr mat
(
T const& a00, T const& a01, T const& a02,
T const& a10, T const& a11, T const& a12,
T const& a20, T const& a21, T const& a22
);
inline static constexpr int length() { return 3; }
inline constexpr typename mat<3, 3, T>::row_type &
operator[](int i);
inline constexpr typename mat<3, 3, T>::row_type const &
operator[](int i) const;
void operator=(const mat<3, 3, T>&) = delete;
};
template<typename T>
inline constexpr mat<3, 3, T>::mat()
: value{std::move(row_type(1, 0, 0)),
std::move(row_type(0, 1, 0)),
std::move(row_type(0, 0, 1))}
{ }
template<typename T>
inline constexpr mat<3, 3, T>::mat
(
T const& a00, T const& a01, T const& a02,
T const& a10, T const& a11, T const& a12,
T const& a20, T const& a21, T const& a22
)
: value{std::move(row_type(a00, a01, a02)),
std::move(row_type(a10, a11, a12)),
std::move(row_type(a20, a21, a22))}
{ }
template <typename T>
inline constexpr typename mat<3, 3, T>::row_type &
mat<3, 3, T>::operator[](int i)
{
return value[i];
}
template <typename T>
inline constexpr typename mat<3, 3, T>::row_type const &
mat<3, 3, T>::operator[](int i) const
{
return value[i];
}
template<typename T>
inline constexpr mat<3, 3, T> operator+(mat<3, 3, T> const& m1, mat<3, 3, T> const& m2)
{
#define c(i, j) ( m1[i][j] + m2[i][j] )
return mat<3, 3, T>(c(0,0), c(0,1), c(0,2),
c(1,0), c(1,1), c(1,2),
c(2,0), c(2,1), c(2,2));
#undef c
}
template<typename T>
inline constexpr mat<3, 3, T> operator*(mat<3, 3, T> const& m1, mat<3, 3, T> const& m2)
{
#define c(i, j) ( \
m1[i][0] * m2[0][j] \
+ m1[i][1] * m2[1][j] \
+ m1[i][2] * m2[2][j] )
return mat<3, 3, T>(c(0,0), c(0,1), c(0,2),
c(1,0), c(1,1), c(1,2),
c(2,0), c(2,1), c(2,2));
#undef c
}
template<typename T>
inline constexpr mat<3, 3, T> operator*(mat<3, 3, T> const& m1, float s)
{
#define c(i, j) ( m1[i][j] * s )
return mat<3, 3, T>(c(0,0), c(0,1), c(0,2),
c(1,0), c(1,1), c(1,2),
c(2,0), c(2,1), c(2,2));
#undef c
}
template<typename T>
inline constexpr typename mat<3, 3, T>::row_type operator*
(
mat<3, 3, T> const& m,
typename mat<3, 3, T>::col_type const& v
)
{
#define c(i) ( \
m[i][0] * v[0] \
+ m[i][1] * v[1] \
+ m[i][2] * v[2] )
return typename mat<3, 3, T>::row_type(c(0), c(1), c(2));
#undef c
}
template<typename T>
inline constexpr mat<3, 3, T> transpose(mat<3, 3, T> const& m)
{
return mat<3, 3, T>(
m[0][0], m[1][0], m[2][0],
m[0][1], m[1][1], m[2][1],
m[0][2], m[1][2], m[2][2]
);
}
template<typename T>
inline constexpr mat<2, 2, T> submatrix(mat<3, 3, T> const& a, int r, int c)
{
mat<2, 2, T> b;
int row2 = 0;
for (int row3 = 0; row3 < 3; row3++) {
if (row3 == r) continue;
int col2 = 0;
for (int col3 = 0; col3 < 3; col3++) {
if (col3 == c) continue;
b[row2][col2] = a[row3][col3];
col2++;
}
row2++;
}
return b;
}
template<typename T>
inline constexpr float minor(mat<3, 3, T> const& a, int r, int c)
{
mat<2, 2, T> s = submatrix(a, r, c);
float ret = determinant(s);
return ret;
}
template<typename T>
inline constexpr float cofactor(mat<3, 3, T> const& a, int r, int c)
{
float m = minor(a, r, c);
if ((r + c) & 1)
return -m;
else
return m;
}
template<typename T>
inline constexpr float determinant(mat<3, 3, T> const& a)
{
float f0 = cofactor(a, 0, 0);
float f1 = cofactor(a, 0, 1);
float f2 = cofactor(a, 0, 2);
return
a[0][0] * f0 +
a[0][1] * f1 +
a[0][2] * f2;
}
template<typename T>
inline constexpr mat<3, 3, T> inverse(mat<3, 3, T> const& a)
{
mat<3, 3, T> m;
float idet = 1.0f / determinant(a);
m[0][0] = cofactor(a, 0, 0) * idet;
m[1][0] = cofactor(a, 0, 1) * idet;
m[2][0] = cofactor(a, 0, 2) * idet;
m[0][1] = cofactor(a, 1, 0) * idet;
m[1][1] = cofactor(a, 1, 1) * idet;
m[2][1] = cofactor(a, 1, 2) * idet;
m[0][2] = cofactor(a, 2, 0) * idet;
m[1][2] = cofactor(a, 2, 1) * idet;
m[2][2] = cofactor(a, 2, 2) * idet;
return m;
}