example: add shadow_volume

This commit is contained in:
Zack Buhman 2025-05-26 13:31:26 -05:00
parent 9f4d743dbb
commit b39abc0b85
9 changed files with 15549 additions and 0 deletions

307
blender_shadow_volume.py Normal file
View File

@ -0,0 +1,307 @@
import bpy
import bmesh
from mathutils import Vector
from collections import defaultdict
from itertools import combinations, chain
def sprint(*text):
screen = bpy.data.screens['Scripting']
for area in screen.areas:
if area.type != "CONSOLE":
continue
override = {'screen': screen, 'area': area}
with bpy.context.temp_override(**override):
bpy.ops.console.scrollback_append(text=" ".join(map(str, text)))
print = sprint
def create_shadow_volume_mesh(light, o: bpy.types.Object, vertex_indices=None):
mesh = bpy.data.meshes.new("test")
if vertex_indices is None:
vertex_indices = range(len(o.data.vertices))
length = len(vertices)
mesh.vertices.add(1 + length)
origin = mesh.vertices[0]
origin.co = Vector(light.location)
mesh.edges.add(length)
for i, v in enumerate(vertices):
v = o.data.vertices[ix]
world_v = Vector(o.matrix_world @ v.co)
mesh.vertices[1 + i].co = world_v
mesh.edges[i].vertices = [0, 1 + i]
object = bpy.data.objects.new("test", mesh)
bpy.context.scene.collection.objects.link(object)
def cast_ray(light, o, ix):
v = o.data.vertices[ix]
start = Vector(o.matrix_world @ v.co)
ray = start - light.location
#ray = Vector((0, 0, 0)) - light.location
ray.normalize()
end = start + (ray * 10)
return start, end
def shadow_volume_mesh_rays(light, o: bpy.types.Object, loop):
length = len(loop)
mesh = bpy.data.meshes.new("test")
#mesh.vertices.add(length * 2)
#mesh.edges.add(length)
vertices = [0] * length * 2
for i, ix in enumerate(loop):
start, end = cast_ray(light, o, ix)
vertices[i * 2 + 0] = start
vertices[i * 2 + 1] = end
bm = bmesh.new()
#bm.from_mesh(mesh)
for i in range(len(loop)):
i1 = i
i2 = (i + 1) % len(loop)
bm.faces.new([
bm.verts.new(vertices[i1 * 2 + 0]), # start
bm.verts.new(vertices[i2 * 2 + 0]), # start
bm.verts.new(vertices[i2 * 2 + 1]), # end
bm.verts.new(vertices[i1 * 2 + 1]), # end
])
bm.to_mesh(mesh)
bm.free()
object = bpy.data.objects.new("test", mesh)
bpy.context.scene.collection.objects.link(object)
def polygon_edges(l):
for i in range(len(l)):
j = (i + 1) % len(l)
yield frozenset((l[i], l[j]))
def polygons_by_edge_pairs(polygons):
pairs = defaultdict(list)
for i, polygon in enumerate(polygons):
for edge in polygon_edges(polygon.vertices):
pairs[edge].append(i)
return list(pairs.items())
def face_indicators(light, o: bpy.types.Object):
indicators = []
for i, normal in enumerate(o.data.polygon_normals):
n = o.matrix_world.to_3x3() @ normal.vector
n.normalize()
a = o.data.polygons[i].vertices[0]
v = o.matrix_world @ o.data.vertices[a].co
#d = v.dot(n)
#indicator = n.dot(light.location) + d
indicator = n.dot(light.location - v)
indicators.append(indicator)
return indicators
def edge_indices(o):
return {
frozenset(edge.vertices): i
for i, edge in enumerate(o.data.edges)
}
def object_silhouette(light, o: bpy.types.Object):
indicators = face_indicators(light, o)
edges = []
for edge, polygons in polygons_by_edge_pairs(o.data.polygons):
assert len(polygons) == 2, polygons
a, b = polygons
if (indicators[a] > 0) != (indicators[b] > 0):
edges.append(edge)
assert len(set(edges)) == len(edges)
return edges, indicators
def delete_test_objects(collection):
for o in collection.objects:
if o.name.startswith("test"):
collection.objects.unlink(o)
def edge_loop(edges):
loop = list(edges.pop())
while True:
for i, (a, b) in enumerate(edges):
if a == loop[-1]:
if b in loop:
return loop
loop.append(b)
elif b == loop[-1]:
if a in loop:
return loop
loop.append(a)
else:
continue
del edges[i]
break
else:
return None
def append(l, a):
if l[0] == -1:
assert l[1] == -1
l[0] = a
else:
assert l[1] == -1
l[1] = a
def make_list(length):
l = []
for i in range(length):
ll = [-1, -1]
l.append(ll)
return l
def edge_loop_graph(edges, num_vertices):
edges_by_vertices = make_list(num_vertices)
for i, (a, b) in enumerate(edges):
append(edges_by_vertices[a], i)
append(edges_by_vertices[b], i)
return edges_by_vertices
def neq(a, b, y):
assert a != -1
assert b != -1
if a == y:
assert b != y
return b
else:
assert a != y
return a
def edge_loop2_inner(edges, graph, ix, visited_edges):
loop = []
while True:
loop.append(ix)
visited_edges[ix] = True
a, b = edges[ix]
next_ix_a = neq(*graph[a], ix)
next_ix_b = neq(*graph[b], ix)
if not visited_edges[next_ix_a]:
ix = next_ix_a
continue
elif not visited_edges[next_ix_b]:
ix = next_ix_b
continue
else:
break
print("inner", loop)
return loop
def next_unvisited(visited):
for i, v in enumerate(visited):
if v == False:
return i
return -1
def edge_loop2(edges, graph):
visited_edges = [False] * len(edges)
loops = []
while True:
start = next_unvisited(visited_edges)
if start == -1:
break
loops.append(edge_loop2_inner(edges, graph, start, visited_edges))
return loops
def edge_loops(edges):
edges = list(edges)
loops = []
while edges:
loop = edge_loop(edges)
if loop is None:
break
loops.append(loop)
return loops
def object_end_caps(light, o: bpy.types.Object, indicators):
front = bpy.data.meshes.new("front")
back = bpy.data.meshes.new("back")
bm_front = bmesh.new()
bm_back = bmesh.new()
for i, polygon in enumerate(o.data.polygons):
assert len(polygon.vertices) == 4
a = o.matrix_world @ o.data.vertices[polygon.vertices[0]].co
b = o.matrix_world @ o.data.vertices[polygon.vertices[1]].co
c = o.matrix_world @ o.data.vertices[polygon.vertices[2]].co
d = o.matrix_world @ o.data.vertices[polygon.vertices[3]].co
if indicators[i] > 0:
face = [
bm_front.verts.new(a),
bm_front.verts.new(b),
bm_front.verts.new(c),
bm_front.verts.new(d),
]
bm_front.faces.new(face)
else:
#ray = Vector((0, 0, 0)) - light.location
ray_a = a - light.location
ray_a.normalize()
ray_b = b - light.location
ray_b.normalize()
ray_c = c - light.location
ray_c.normalize()
ray_d = d - light.location
ray_d.normalize()
face = [
bm_back.verts.new(a + (ray_a * 10)),
bm_back.verts.new(b + (ray_b * 10)),
bm_back.verts.new(c + (ray_c * 10)),
bm_back.verts.new(d + (ray_d * 10)),
]
bm_back.faces.new(face)
bm_front.to_mesh(front)
bm_front.free()
object_front = bpy.data.objects.new("test_front", front)
bpy.context.scene.collection.objects.link(object_front)
bm_back.to_mesh(back)
bm_back.free()
object_back = bpy.data.objects.new("test_back", back)
bpy.context.scene.collection.objects.link(object_back)
light = bpy.context.scene.objects['Light']
cube = bpy.context.scene.objects['Torus']
delete_test_objects(bpy.context.scene.collection)
edges, indicators = object_silhouette(light, cube)
object_end_caps(light, cube, indicators)
for loop in edge_loops(edges):
print("loop", len(loop))
shadow_volume_mesh_rays(light, cube, loop)
graph = edge_loop_graph(edges, len(cube.data.vertices))
"""
print(graph)
loops = edge_loop2(edges, graph)
obj = bpy.context.edit_object
bm = bmesh.from_edit_mesh(obj.data)
for loop in loops:
for edge_ix in loop:
edge = edges[edge_ix]
for e in bm.edges:
if frozenset((e.verts[0].index, e.verts[1].index)) == frozenset(edge):
e.select = True
bmesh.update_edit_mesh(obj.data)
"""
"""
obj = bpy.context.edit_object
bm = bmesh.from_edit_mesh(obj.data)
bm.faces[4].select = True
bmesh.update_edit_mesh(obj.data)
"""

View File

@ -1147,3 +1147,22 @@ MODIFIER_VOLUME_HOLE_OBJ = \
example/modifier_volume_hole.elf: LDSCRIPT = $(LIB)/main.lds
example/modifier_volume_hole.elf: $(START_OBJ) $(MODIFIER_VOLUME_HOLE_OBJ)
SHADOW_VOLUME_OBJ = \
example/shadow_volume.o \
holly/core.o \
holly/region_array.o \
holly/background.o \
holly/ta_fifo_polygon_converter.o \
holly/video_output.o \
sh7091/serial.o \
maple/maple.o \
sh7091/c_serial.o \
printf/printf.o \
printf/unparse.o \
printf/parse.o \
shadow_volume.o \
$(LIBGCC)
example/shadow_volume.elf: LDSCRIPT = $(LIB)/main.lds
example/shadow_volume.elf: $(START_OBJ) $(SHADOW_VOLUME_OBJ)

599
example/shadow_volume.cpp Normal file
View File

@ -0,0 +1,599 @@
#include <bit>
#include "holly/background.hpp"
#include "holly/core.hpp"
#include "holly/core_bits.hpp"
#include "holly/holly.hpp"
#include "holly/isp_tsp.hpp"
#include "holly/region_array.hpp"
#include "holly/ta_bits.hpp"
#include "holly/ta_fifo_polygon_converter.hpp"
#include "holly/ta_global_parameter.hpp"
#include "holly/ta_parameter.hpp"
#include "holly/ta_vertex_parameter.hpp"
#include "holly/texture_memory_alloc5.hpp"
#include "holly/video_output.hpp"
#include "systembus.hpp"
#include "systembus_bits.hpp"
#include "maple/maple.hpp"
#include "maple/maple_host_command_writer.hpp"
#include "maple/maple_bus_bits.hpp"
#include "maple/maple_bus_commands.hpp"
#include "maple/maple_bus_ft0.hpp"
#include "memorymap.hpp"
#include "sh7091/sh7091.hpp"
#include "sh7091/sh7091_bits.hpp"
#include "sh7091/serial.hpp"
#include "printf/printf.h"
#include "math/float_types.hpp"
#include "math/transform.hpp"
#include "interrupt.hpp"
#include "assert.h"
#include "model/blender_export.h"
#include "model/torus.h"
#include "shadow_volume.hpp"
static ft0::data_transfer::data_format data[4];
uint8_t send_buf[1024] __attribute__((aligned(32)));
uint8_t recv_buf[1024] __attribute__((aligned(32)));
void do_get_condition()
{
auto writer = maple::host_command_writer(send_buf, recv_buf);
using command_type = maple::get_condition;
using response_type = maple::data_transfer<ft0::data_transfer::data_format>;
auto [host_command, host_response]
= writer.append_command_all_ports<command_type, response_type>();
for (int port = 0; port < 4; port++) {
auto& data_fields = host_command[port].bus_data.data_fields;
data_fields.function_type = std::byteswap(function_type::controller);
}
maple::dma_start(send_buf, writer.send_offset,
recv_buf, writer.recv_offset);
for (uint8_t port = 0; port < 4; port++) {
auto& bus_data = host_response[port].bus_data;
if (bus_data.command_code != response_type::command_code) {
return;
}
auto& data_fields = bus_data.data_fields;
if ((std::byteswap(data_fields.function_type) & function_type::controller) == 0) {
return;
}
data[port].digital_button = data_fields.data.digital_button;
for (int i = 0; i < 6; i++) {
data[port].analog_coordinate_axis[i]
= data_fields.data.analog_coordinate_axis[i];
}
}
}
void vbr100()
{
serial::string("vbr100\n");
interrupt_exception();
}
void vbr400()
{
serial::string("vbr400\n");
interrupt_exception();
}
const int framebuffer_width = 640;
const int framebuffer_height = 480;
const int tile_width = framebuffer_width / 32;
const int tile_height = framebuffer_height / 32;
constexpr uint32_t ta_alloc = 0
| ta_alloc_ctrl::pt_opb::no_list
| ta_alloc_ctrl::tm_opb::no_list
| ta_alloc_ctrl::t_opb::no_list
| ta_alloc_ctrl::om_opb::_32x4byte
| ta_alloc_ctrl::o_opb::_32x4byte;
constexpr int ta_cont_count = 1;
constexpr struct opb_size opb_size[ta_cont_count] = {
{
.opaque = 32 * 4,
.opaque_modifier = 32 * 4,
.translucent = 0,
.translucent_modifier = 0,
.punch_through = 0
}
};
static volatile int ta_in_use = 0;
static volatile int core_in_use = 0;
static volatile int next_frame = 0;
static volatile int framebuffer_ix = 0;
static volatile int next_frame_ix = 0;
static inline void pump_events(uint32_t istnrm)
{
if (istnrm & istnrm::v_blank_in) {
system.ISTNRM = istnrm::v_blank_in;
next_frame = 1;
holly.FB_R_SOF1 = texture_memory_alloc.framebuffer[next_frame_ix].start;
}
if (istnrm & istnrm::end_of_render_tsp) {
system.ISTNRM = istnrm::end_of_render_tsp
| istnrm::end_of_render_isp
| istnrm::end_of_render_video;
next_frame_ix = framebuffer_ix;
framebuffer_ix += 1;
if (framebuffer_ix >= 3) framebuffer_ix = 0;
core_in_use = 0;
}
if (istnrm & istnrm::end_of_transferring_opaque_list) {
system.ISTNRM = istnrm::end_of_transferring_opaque_list;
core_in_use = 1;
core_start_render2(texture_memory_alloc.region_array.start,
texture_memory_alloc.isp_tsp_parameters.start,
texture_memory_alloc.background[0].start,
texture_memory_alloc.framebuffer[framebuffer_ix].start,
framebuffer_width);
ta_in_use = 0;
}
}
void vbr600()
{
uint32_t sr;
asm volatile ("stc sr,%0" : "=r" (sr));
sr |= sh::sr::imask(15);
asm volatile ("ldc %0,sr" : : "r" (sr));
if (sh7091.CCN.EXPEVT == 0 && sh7091.CCN.INTEVT == 0x320) {
uint32_t istnrm = system.ISTNRM;
uint32_t isterr = system.ISTERR;
if (isterr) {
serial::string("isterr: ");
serial::integer<uint32_t>(system.ISTERR);
}
pump_events(istnrm);
sr &= ~sh::sr::imask(15);
asm volatile ("ldc %0,sr" : : "r" (sr));
return;
}
serial::string("vbr600\n");
interrupt_exception();
}
void global_polygon_type_1(ta_parameter_writer& writer,
uint32_t para_control_obj_control,
bool always,
const float a = 1.0f,
const float r = 1.0f,
const float g = 1.0f,
const float b = 1.0f
)
{
const uint32_t parameter_control_word = para_control::para_type::polygon_or_modifier_volume
| obj_control::col_type::intensity_mode_1
| obj_control::gouraud
| para_control_obj_control
;
const uint32_t depth_compare_mode = always
? isp_tsp_instruction_word::depth_compare_mode::always
: isp_tsp_instruction_word::depth_compare_mode::greater_or_equal
;
const uint32_t isp_tsp_instruction_word = depth_compare_mode
| isp_tsp_instruction_word::culling_mode::no_culling
;
const uint32_t tsp_instruction_word = tsp_instruction_word::fog_control::no_fog
| tsp_instruction_word::texture_shading_instruction::decal
| tsp_instruction_word::src_alpha_instr::one
| tsp_instruction_word::dst_alpha_instr::zero
;
const uint32_t texture_control_word = 0;
writer.append<ta_global_parameter::polygon_type_1>() =
ta_global_parameter::polygon_type_1(parameter_control_word,
isp_tsp_instruction_word,
tsp_instruction_word,
texture_control_word,
a,
r,
g,
b
);
}
void global_polygon_modifier_volume(ta_parameter_writer * writer)
{
uint32_t parameter_control_word = para_control::para_type::polygon_or_modifier_volume
| para_control::list_type::opaque_modifier_volume
;
uint32_t isp_tsp_instruction_word = isp_tsp_instruction_word::volume_instruction::normal_polygon
| isp_tsp_instruction_word::culling_mode::no_culling;
writer->append<ta_global_parameter::modifier_volume>() =
ta_global_parameter::modifier_volume(parameter_control_word,
isp_tsp_instruction_word);
}
void global_polygon_modifier_volume_last_in_volume(ta_parameter_writer * writer)
{
const uint32_t last_parameter_control_word = para_control::para_type::polygon_or_modifier_volume
| para_control::list_type::opaque_modifier_volume
| obj_control::volume::modifier_volume::last_in_volume;
const uint32_t last_isp_tsp_instruction_word = isp_tsp_instruction_word::volume_instruction::inside_last_polygon
| isp_tsp_instruction_word::culling_mode::no_culling;
writer->append<ta_global_parameter::modifier_volume>() =
ta_global_parameter::modifier_volume(last_parameter_control_word,
last_isp_tsp_instruction_word);
}
static inline vec3 screen_transform(vec3 v)
{
float dim = 480 / 2.0;
return {
v.x / (1.f * v.z) * dim + 640 / 2.0f,
v.y / (1.f * v.z) * dim + 480 / 2.0f,
1 / v.z,
};
}
static inline void render_quad(ta_parameter_writer& writer,
vec3 ap,
vec3 bp,
vec3 cp,
vec3 dp,
float ai,
float bi,
float ci,
float di)
{
if (ap.z < 0 || bp.z < 0 || cp.z < 0 || dp.z < 0)
return;
writer.append<ta_vertex_parameter::polygon_type_2>() =
ta_vertex_parameter::polygon_type_2(polygon_vertex_parameter_control_word(false),
ap.x, ap.y, ap.z,
ai);
writer.append<ta_vertex_parameter::polygon_type_2>() =
ta_vertex_parameter::polygon_type_2(polygon_vertex_parameter_control_word(false),
bp.x, bp.y, bp.z,
bi);
writer.append<ta_vertex_parameter::polygon_type_2>() =
ta_vertex_parameter::polygon_type_2(polygon_vertex_parameter_control_word(false),
dp.x, dp.y, dp.z,
di);
writer.append<ta_vertex_parameter::polygon_type_2>() =
ta_vertex_parameter::polygon_type_2(polygon_vertex_parameter_control_word(true),
cp.x, cp.y, cp.z,
ci);
}
#define fsrra(n) (1.0f / (sqrt(n)))
void transfer_line(ta_parameter_writer& writer, vec3 p1, vec3 p2)
{
float dy = p2.y - p1.y;
float dx = p2.x - p1.x;
float d = fsrra(dx * dx + dy * dy) * 0.7f;
float dy1 = dy * d;
float dx1 = dx * d;
vec3 ap = { p1.x + dy1, p1.y + -dx1, p1.z };
vec3 bp = { p1.x + -dy1, p1.y + dx1, p1.z };
vec3 cp = { p2.x + -dy1, p2.y + dx1, p2.z };
vec3 dp = { p2.x + dy1, p2.y + -dx1, p2.z };
float li = 1.0f;
render_quad(writer, ap, bp, cp, dp, li, li, li, li);
}
static ta_parameter_writer * _writer;
static ta_parameter_writer * _sv_writer;
void render_quad_sv(vec3 a,
vec3 b,
vec3 c,
vec3 d,
bool last_in_volume)
{
float ai = 1.0f;
float bi = 1.0f;
float ci = 1.0f;
float di = 1.0f;
vec3 ap = screen_transform(a);
vec3 bp = screen_transform(b);
vec3 cp = screen_transform(c);
vec3 dp = screen_transform(d);
/*
render_quad(*_writer,
ap,
bp,
cp,
dp,
ai,
bi,
ci,
di);
*/
/*
transfer_line(*_writer, ap, bp);
transfer_line(*_writer, bp, cp);
transfer_line(*_writer, cp, dp);
transfer_line(*_writer, dp, ap);
*/
/*
A B A B B
D C D D C
*/
_sv_writer->append<ta_vertex_parameter::modifier_volume>() =
ta_vertex_parameter::modifier_volume(modifier_volume_vertex_parameter_control_word(),
ap.x, ap.y, ap.z,
bp.x, bp.y, bp.z,
dp.x, dp.y, dp.z);
if (last_in_volume) {
global_polygon_modifier_volume_last_in_volume(_sv_writer);
}
_sv_writer->append<ta_vertex_parameter::modifier_volume>() =
ta_vertex_parameter::modifier_volume(modifier_volume_vertex_parameter_control_word(),
bp.x, bp.y, bp.z,
cp.x, cp.y, cp.z,
dp.x, dp.y, dp.z);
}
float _rotate_x = 0;
void transfer_mesh(ta_parameter_writer& writer,
const mat4x4& screen_trans,
const object * object,
const vec3 light,
const bool cast_shadow,
const bool receive_shadow,
const bool diffuse,
vec3 color)
{
const mesh * mesh = object->mesh;
vec3 position[mesh->position_length];
vec3 polygon_normal[mesh->polygon_normal_length];
assert(mesh->polygon_normal_length == mesh->polygons_length);
mat4x4 trans = screen_trans
* translate(object->location)
* rotate_x(_rotate_x)
* rotate_quaternion(object->rotation)
* scale(object->scale);
for (int i = 0; i < mesh->position_length; i++) {
position[i] = trans * mesh->position[i];
}
for (int i = 0; i < mesh->polygon_normal_length; i++) {
polygon_normal[i] = normalize(normal_multiply(trans, mesh->polygon_normal[i]));
}
bool always = false;
uint32_t shadow = receive_shadow ? obj_control::shadow : 0;
uint32_t control = para_control::list_type::opaque | shadow;
global_polygon_type_1(writer,
control,
always,
1.0f,
color.x, color.y, color.z);
for (int i = 0; i < mesh->polygons_length; i++) {
const polygon * p = &mesh->polygons[i];
vec3 ap = screen_transform(position[p->a]);
vec3 bp = screen_transform(position[p->b]);
vec3 cp = screen_transform(position[p->c]);
vec3 dp = screen_transform(position[p->d]);
float li = 1.0f;
if (diffuse) {
vec3 light_dir = normalize(light - position[p->a]);
float diffuse = max(dot(polygon_normal[i], light_dir), 0.0f);
li = 0.5 + 0.6 * diffuse;
}
render_quad(writer, ap, bp, cp, dp, li, li, li, li);
}
if (cast_shadow) {
global_polygon_modifier_volume(_sv_writer);
global_polygon_type_1(writer,
control,
always,
1, 1, 0.5, 0.5);
shadow_volume_mesh(light, position, polygon_normal, mesh, render_quad_sv);
}
}
mat4x4 light_trans = mat4x4();
float _torus_rx = 0;
void transfer_scene(ta_parameter_writer& writer, const mat4x4& screen_trans)
{
light_trans = rotate_z(0.01f) * light_trans;
vec3 light = screen_trans * light_trans * objects[0].location;
// opaque list
{
_rotate_x = 0;
transfer_mesh(writer, screen_trans * light_trans, &objects[0], light,
false, // cast shadow
false, // receive shadow
false, // diffuse
(vec3){0.9, 0.9, 0.9}
);
_rotate_x = 0;
transfer_mesh(writer, screen_trans, &objects[1], light,
false, // cast shadow
true, // receive shadow
true, // diffuse
(vec3){0.5, 0.9, 0.5}
);
_rotate_x = _torus_rx;
_torus_rx += 0.001f;
transfer_mesh(writer, screen_trans, &objects[2], light,
true, // cast shadow
false, // receive shadow
true, // diffuse
(vec3){1, 0, 1}
);
writer.append<ta_global_parameter::end_of_list>() =
ta_global_parameter::end_of_list(para_control::para_type::end_of_list);
_sv_writer->append<ta_global_parameter::end_of_list>() =
ta_global_parameter::end_of_list(para_control::para_type::end_of_list);
}
}
mat4x4 update_analog(mat4x4& screen_trans)
{
const float l_ = static_cast<float>(data[0].analog_coordinate_axis[0]) * (1.f / 255.f);
const float r_ = static_cast<float>(data[0].analog_coordinate_axis[1]) * (1.f / 255.f);
const float x_ = static_cast<float>(data[0].analog_coordinate_axis[2] - 0x80) / 127.f;
const float y_ = static_cast<float>(data[0].analog_coordinate_axis[3] - 0x80) / 127.f;
float y = -0.05f * x_;
float x = 0.05f * y_;
float z = -0.05f * r_ + 0.05f * l_;
return translate((vec3){0, 0, z}) *
screen_trans *
rotate_x(x) *
rotate_z(y);
}
uint8_t __attribute__((aligned(32))) ta_parameter_buf1[1024 * 1024];
uint8_t __attribute__((aligned(32))) ta_parameter_buf2[1024 * 1024];
int main()
{
sh7091.TMU.TSTR = 0; // stop all timers
sh7091.TMU.TOCR = tmu::tocr::tcoe::tclk_is_external_clock_or_input_capture;
sh7091.TMU.TCR0 = tmu::tcr0::tpsc::p_phi_256; // 256 / 50MHz = 5.12 μs ; underflows in ~1 hour
sh7091.TMU.TCOR0 = 0xffff'ffff;
sh7091.TMU.TCNT0 = 0xffff'ffff;
sh7091.TMU.TSTR = tmu::tstr::str0::counter_start;
serial::init(0);
interrupt_init();
holly.SOFTRESET = softreset::pipeline_soft_reset
| softreset::ta_soft_reset;
holly.SOFTRESET = 0;
core_init();
holly.FPU_SHAD_SCALE = fpu_shad_scale::simple_shadow_enable::intensity_volume_mode
| fpu_shad_scale::scale_factor_for_shadows(128);
system.IML6NRM = istnrm::end_of_render_tsp
| istnrm::v_blank_in
| istnrm::end_of_transferring_opaque_list;
region_array_multipass(tile_width,
tile_height,
opb_size,
ta_cont_count,
texture_memory_alloc.region_array.start,
texture_memory_alloc.object_list.start);
background_parameter2(texture_memory_alloc.background[0].start,
0xff202040);
ta_parameter_writer writer = ta_parameter_writer(ta_parameter_buf1, (sizeof (ta_parameter_buf1)));
ta_parameter_writer sv_writer = ta_parameter_writer(ta_parameter_buf2, (sizeof (ta_parameter_buf2)));
_writer = &writer;
_sv_writer = &sv_writer;
video_output::set_mode_vga();
mat4x4 screen_trans = {
1, 0, 0, 0,
0, 0, -1, 0,
0, 1, 0, 7,
0, 0, 0, 1,
};
do_get_condition();
while (1) {
maple::dma_wait_complete();
do_get_condition();
screen_trans = update_analog(screen_trans);
writer.offset = 0;
sv_writer.offset = 0;
transfer_scene(writer, screen_trans);
while (ta_in_use);
while (core_in_use);
ta_in_use = 1;
ta_polygon_converter_init2(texture_memory_alloc.isp_tsp_parameters.start,
texture_memory_alloc.isp_tsp_parameters.end,
texture_memory_alloc.object_list.start,
texture_memory_alloc.object_list.end,
opb_size[0].total(),
ta_alloc,
tile_width,
tile_height);
ta_polygon_converter_writeback(sv_writer.buf, sv_writer.offset);
ta_polygon_converter_transfer(sv_writer.buf, sv_writer.offset);
ta_wait_opaque_modifier_volume_list();
ta_polygon_converter_writeback(writer.buf, writer.offset);
ta_polygon_converter_transfer(writer.buf, writer.offset);
while (next_frame == 0);
next_frame = 0;
}
}

15
math/float_types.hpp Normal file
View File

@ -0,0 +1,15 @@
#pragma once
#include "math/vec2.hpp"
#include "math/vec3.hpp"
#include "math/vec4.hpp"
#include "math/mat2x2.hpp"
#include "math/mat3x3.hpp"
#include "math/mat4x4.hpp"
using vec2 = vec<2, float>;
using vec3 = vec<3, float>;
using vec4 = vec<4, float>;
using mat2x2 = mat<2, 2, float>;
using mat3x3 = mat<3, 3, float>;
using mat4x4 = mat<4, 4, float>;

View File

@ -1,3 +1,5 @@
#pragma once
struct polygon {
int a, b, c, d;
int material_index;
@ -10,6 +12,19 @@ struct mesh_material {
int offset;
};
struct edge {
int a; // vertices index
int b; // vertices index
};
struct edge_polygon {
struct edge edge;
struct {
int a;
int b;
} polygon_index; // polygon indices
};
struct mesh {
const vec3 * position;
const int position_length;
@ -23,6 +38,8 @@ struct mesh {
const int uv_layers_length;
const mesh_material * materials;
const int materials_length;
const edge_polygon * edge_polygons;
const int edge_polygons_length;
};
struct object {

BIN
model/torus.blend Normal file

Binary file not shown.

14294
model/torus.h Normal file

File diff suppressed because it is too large Load Diff

288
shadow_volume.cpp Normal file
View File

@ -0,0 +1,288 @@
#include "shadow_volume.hpp"
#include "math/float_types.hpp"
#include "assert.h"
#include "printf/printf.h"
static inline void face_indicators(const vec3 light,
const vec3 * position,
const vec3 * polygon_normal,
const mesh * mesh,
float * indicators)
{
for (int i = 0; i < mesh->polygons_length; i++) {
vec3 n = polygon_normal[i];
vec3 p = position[mesh->polygons[i].a];
float indicator = dot(n, (light - p));
indicators[i] = indicator;
}
}
static inline int object_silhouette(const float * indicators,
const mesh * mesh,
int * edge_indices)
{
int ix = 0;
for (int i = 0; i < mesh->edge_polygons_length; i++) {
const edge_polygon * ep = &mesh->edge_polygons[i];
if ((indicators[ep->polygon_index.a] > 0) != (indicators[ep->polygon_index.b] > 0)) {
edge_indices[ix] = i;
ix += 1;
}
}
return ix;
}
struct graph {
int a;
int b;
};
void graph_append(graph * g, int v)
{
if (!(g->a == -1 || g->b == -1)) {
return;
}
if (g->a == -1) {
g->a = v;
} else {
g->b = v;
}
}
void edge_loop_graph(const mesh * mesh,
const int * edge_indices,
const int edge_indices_length,
graph * graph)
{
for (int i = 0; i < mesh->position_length; i++) {
graph[i].a = -1;
graph[i].b = -1;
}
for (int i = 0; i < edge_indices_length; i++) {
int edge_index = edge_indices[i];
const edge& edge = mesh->edge_polygons[edge_index].edge;
graph_append(&graph[edge.a], i);
graph_append(&graph[edge.b], i);
}
}
int next_neighbor(const graph& graph, int ix)
{
if (graph.a == ix)
return graph.b;
else
return graph.a;
}
int edge_loop_inner(const mesh * mesh,
const int * edge_indices,
const graph * graph,
bool * visited_edge_indices,
int ix,
int * edge_loop)
{
int edge_loop_ix = 0;
const edge& e = mesh->edge_polygons[edge_indices[ix]].edge;
edge_loop[edge_loop_ix] = e.b;
edge_loop_ix += 1;
while (true) {
visited_edge_indices[ix] = true;
int edge_index = edge_indices[ix];
const edge& e = mesh->edge_polygons[edge_index].edge;
int next_ix_a = next_neighbor(graph[e.a], ix);
int next_ix_b = next_neighbor(graph[e.b], ix);
if (visited_edge_indices[next_ix_a] == false) {
edge_loop[edge_loop_ix] = e.a;
edge_loop_ix += 1;
ix = next_ix_a;
} else if (visited_edge_indices[next_ix_b] == false) {
edge_loop[edge_loop_ix] = e.b;
edge_loop_ix += 1;
ix = next_ix_b;
} else {
break;
}
}
return edge_loop_ix;
}
int next_unvisited(const bool * visited_edge_indices,
const int edge_indices_length)
{
for (int i = 0; i < edge_indices_length; i++) {
if (visited_edge_indices[i] == false)
return i;
}
return -1;
}
int edge_loop(const mesh * mesh,
const int * edge_indices,
const int edge_indices_length,
const graph * graph,
int * edge_loops,
int * edge_loop_lengths,
int max_edge_loops)
{
bool visited_edge_indices[edge_indices_length];
for (int i = 0; i < edge_indices_length; i++) {
visited_edge_indices[i] = false;
}
int edge_loop_ix = 0;
int i;
for (i = 0; i < max_edge_loops; i++) {
int start = next_unvisited(visited_edge_indices, edge_indices_length);
if (start == -1)
break;
int length = edge_loop_inner(mesh, edge_indices, graph, visited_edge_indices, start,
&edge_loops[edge_loop_ix]);
edge_loop_lengths[i] = length;
edge_loop_ix += length;
}
return i;
}
static inline vec3 cast_ray(const vec3 light,
const vec3 start)
{
vec3 ray = start - light;
return start + (normalize(ray) * 7.f);
}
void shadow_volume_mesh_rays(const vec3 light,
const vec3 * position,
const vec3 * cast_position,
const int * edge_loop,
const int edge_loop_length,
void(*render_quad)(vec3 a, vec3 b, vec3 c, vec3 d, bool l))
{
for (int i = 0; i < edge_loop_length; i++) {
int j = i + 1;
if (j >= edge_loop_length) j = 0;
int i1 = edge_loop[i];
int i2 = edge_loop[j];
vec3 a = position[i1];
vec3 b = position[i2];
vec3 c = cast_position[i2];
vec3 d = cast_position[i1];
bool last_in_volume = (i == (edge_loop_length - 1));
render_quad(a, b, c, d, last_in_volume);
}
}
void shadow_volume_end_caps(const vec3 light,
const vec3 * position,
const vec3 * cast_position,
const mesh * mesh,
const float * indicators,
void(*render_quad)(vec3 a, vec3 b, vec3 c, vec3 d, bool l))
{
for (int i = 0; i < mesh->polygons_length; i++) {
const polygon * p = &mesh->polygons[i];
if (indicators[i] > 0) {
vec3 a = position[p->a];
vec3 b = position[p->b];
vec3 c = position[p->c];
vec3 d = position[p->d];
render_quad(a, b, c, d, false);
} else {
vec3 a = cast_position[p->a];
vec3 b = cast_position[p->b];
vec3 c = cast_position[p->c];
vec3 d = cast_position[p->d];
render_quad(a, b, c, d, false);
}
}
}
void shadow_volume_mesh(const vec3 light,
const vec3 * position,
const vec3 * polygon_normal,
const mesh * mesh,
void(*render_quad)(vec3 a, vec3 b, vec3 c, vec3 d, bool l))
{
// light in world space
float indicators[mesh->polygon_normal_length];
face_indicators(light, position, polygon_normal, mesh, indicators);
// edge_indicies: mesh->edge_polygons indices
int edge_indices[mesh->edge_polygons_length];
int edge_indices_length = object_silhouette(indicators, mesh, edge_indices);
// graph contains indexes to edge_indices (not mesh edge indices)
graph graph[mesh->position_length];
edge_loop_graph(mesh, edge_indices, edge_indices_length, graph);
const int max_edge_loops = 2;
int edge_loops[edge_indices_length];
int edge_loop_lengths[max_edge_loops];
int loop_count = edge_loop(mesh,
edge_indices,
edge_indices_length,
graph,
edge_loops,
edge_loop_lengths,
max_edge_loops);
vec3 cast_position[mesh->position_length];
for (int i = 0; i < mesh->position_length; i++) {
cast_position[i] = cast_ray(light, position[i]);
}
shadow_volume_end_caps(light,
position,
cast_position,
mesh,
indicators,
render_quad);
// edge_loops contains position indices
int edge_loop_ix = 0;
for (int i = 0; i < loop_count; i++) {
int edge_loop_length = edge_loop_lengths[i];
int * edge_loop = &edge_loops[edge_loop_ix];
shadow_volume_mesh_rays(light,
position,
cast_position,
edge_loop,
edge_loop_length,
render_quad);
edge_loop_ix += edge_loop_length;
}
if (0) {
int edge_loop_ix = 0;
for (int i = 0; i < loop_count; i++) {
int length = edge_loop_lengths[i];
printf("loop %d: %d\n", i, length);
for (int j = 0; j < length; j++) {
printf(" %d", edge_loops[j + edge_loop_ix]);
}
printf("\n\n");
edge_loop_ix += length;
}
}
/*
for (int i = 0; i < silhouette_length; i++) {
out_edges[edges[i]] = 1;
}
*/
}

10
shadow_volume.hpp Normal file
View File

@ -0,0 +1,10 @@
#pragma once
#include "math/float_types.hpp"
#include "model/blender_export.h"
void shadow_volume_mesh(const vec3 light,
const vec3 * position,
const vec3 * polygon_normal,
const mesh * mesh,
void(*render_quad)(vec3 a, vec3 b, vec3 c, vec3 d, bool l));