sh-dis/c/state_helpers.h

110 lines
3.5 KiB
C

#pragma once
#include <stddef.h>
#include <assert.h>
#include "state.h"
#include "memory_map.h"
#include "status_bits.h"
static inline bool is_delay_slot(struct architectural_state * state)
{
return state->is_delay_slot;
}
static inline struct sr_bits _sr_bits(uint32_t sr)
{
union {
struct sr_bits bits;
uint32_t value;
} sr_union;
sr_union.value = sr;
return sr_union.bits;
}
static inline bool fpu_is_disabled(uint32_t sr)
{
return _sr_bits(sr).fd;
}
static inline void sleep(struct architectural_state * state)
{
}
static inline void ocbp(struct architectural_state * state, uint32_t address)
{
}
static inline uint8_t read_memory8(struct memory_map * map, uint32_t address)
{
struct memory_map_entry * entry = find_entry(map, address);
if (entry == NULL) return 0;
uint32_t relative_address = physical_address(address) - entry->start;
return entry->access.read_memory8(entry->mem, relative_address);
}
static inline uint16_t read_memory16(struct memory_map * map, uint32_t address)
{
assert((address & 0b1) == 0);
struct memory_map_entry * entry = find_entry(map, address);
if (entry == NULL) return 0;
uint32_t relative_address = physical_address(address) - entry->start;
return entry->access.read_memory16(entry->mem, relative_address);
}
static inline uint32_t read_memory32(struct memory_map * map, uint32_t address)
{
assert((address & 0b11) == 0);
struct memory_map_entry * entry = find_entry(map, address);
if (entry == NULL) return 0;
uint32_t relative_address = physical_address(address) - entry->start;
return entry->access.read_memory32(entry->mem, relative_address);
}
static inline uint64_t read_memory_pair32(struct memory_map * map, uint32_t address)
{
assert((address & 0b111) == 0);
struct memory_map_entry * entry = find_entry(map, address);
if (entry == NULL) return 0;
uint32_t relative_address = physical_address(address) - entry->start;
uint64_t low = entry->access.read_memory32(entry->mem, relative_address);
uint64_t high = entry->access.read_memory32(entry->mem, relative_address+4);
return (high << 32) | (low << 0);
}
static inline void write_memory8(struct memory_map * map, uint32_t address, uint8_t value)
{
struct memory_map_entry * entry = find_entry(map, address);
if (entry == NULL) return;
uint32_t relative_address = physical_address(address) - entry->start;
entry->access.write_memory8(entry->mem, relative_address, value);
}
static inline void write_memory16(struct memory_map * map, uint32_t address, uint16_t value)
{
assert((address & 0b1) == 0);
struct memory_map_entry * entry = find_entry(map, address);
if (entry == NULL) return;
uint32_t relative_address = physical_address(address) - entry->start;
entry->access.write_memory16(entry->mem, relative_address, value);
}
static inline void write_memory32(struct memory_map * map, uint32_t address, uint32_t value)
{
assert((address & 0b11) == 0);
struct memory_map_entry * entry = find_entry(map, address);
if (entry == NULL) return;
uint32_t relative_address = physical_address(address) - entry->start;
entry->access.write_memory32(entry->mem, relative_address, value);
}
static inline void write_memory_pair32(struct memory_map * map, uint32_t address, uint64_t value)
{
assert((address & 0b111) == 0);
struct memory_map_entry * entry = find_entry(map, address);
if (entry == NULL) return;
uint32_t relative_address = physical_address(address) - entry->start;
entry->access.write_memory32(entry->mem, relative_address, (value >> 0 ));
entry->access.write_memory32(entry->mem, relative_address+4, (value >> 32));
}