237 lines
7.4 KiB
C++

#include <stdint.h>
#include "vdp2.h"
#include "vdp1.h"
extern void * _ipafont_data_start __asm("_binary_res_ipafont_bin_start");
constexpr inline uint16_t rgb15_gray(uint32_t intensity)
{
return ((intensity & 31) << 10) // blue
| ((intensity & 31) << 5 ) // green
| ((intensity & 31) << 0 ); // red
}
void color_palette(uint32_t colors, uint32_t color_bank)
{
/* generate a palette of 32 grays */
uint16_t * table = &vdp2.cram.u16[colors * color_bank];
for (uint32_t i = 0; i <= 31; i++) {
table[i] = rgb15_gray(i);
}
}
/*
uint32_t character_pattern_table(const uint32_t top)
{
// Unlike vdp2 cell format, vdp1 sprites appear to be much more dimensionally
// flexible. The data is interpreted as a row-major packed array, where the
// row/horizontal stride is equal to the sprite width (as configured in the
// draw command). This is identical to how the input palette index data is
// structured, so there is no transformation to do here, only a plain memory
// copy.
// Multiply `buf_size` by one because this converts (indexed color) 8 bit pixels
// to 8 bit pixels. Round up to the nearest 0x20 (for an 8000 pixel/8000 byte
// image, this rounding is a no-op).
const uint32_t table_size = ((buf_size * 1) + 0x20 - 1) & (-0x20);
const uint32_t table_address = top - table_size;
uint16_t * table = &vdp1.vram.u16[(table_address / 2)];
// `table_size` is in bytes; divide by two to get uint16_t indicies.
uint32_t buf_ix = 0;
for (uint32_t table_ix = 0; table_ix < (table_size / 2); table_ix++) {
uint32_t tmp = buf[buf_ix];
table[table_ix] = (((tmp >> 8) & 0xff) << 8)
| (((tmp >> 0) & 0xff) << 0);
buf_ix += 1;
}
return table_address;
}
*/
// metrics are 26.6 fixed point
struct glyph_metrics {
int32_t width;
int32_t height;
int32_t horiBearingX;
int32_t horiBearingY;
int32_t horiAdvance;
} __attribute__ ((packed));
static_assert((sizeof (glyph_metrics)) == ((sizeof (int32_t)) * 5));
struct glyph_bitmap {
uint32_t offset;
uint32_t rows;
uint32_t width;
uint32_t pitch;
} __attribute__ ((packed));
static_assert((sizeof (glyph_bitmap)) == ((sizeof (uint32_t)) * 4));
struct glyph {
glyph_bitmap bitmap;
glyph_metrics metrics;
} __attribute__ ((packed));
template <typename T>
void copy(T * dst, const T * src, int32_t n) noexcept
{
while (n > 0) {
*dst++ = *src++;
n -= (sizeof (T));
}
}
uint32_t pixel_data(const uint32_t top, const uint8_t * glyph_bitmaps, const uint32_t bitmap_offset)
{
const uint32_t * buf = reinterpret_cast<const uint32_t *>(&glyph_bitmaps[0]);
const uint32_t table_size = (bitmap_offset + 0x20 - 1) & (-0x20);
const uint32_t table_address = top - table_size;
uint32_t * table = &vdp1.vram.u32[(table_address / 4)];
copy<uint32_t>(table, buf, bitmap_offset);
return table_address;
}
uint32_t draw_utf16_string(const uint32_t color_address,
const uint32_t character_address,
const glyph * glyphs,
uint32_t cmd_ix,
const char16_t * string,
const uint32_t length)
{
int32_t x = 8 << 6;
int32_t y = 100 << 6;
for (uint32_t i = 0; i < length; i++) {
const char16_t c = string[i];
const uint16_t c_offset = c - 0x3000;
const glyph_bitmap& bitmap = glyphs[c_offset].bitmap;
const glyph_metrics& metrics = glyphs[c_offset].metrics;
vdp1.vram.cmd[cmd_ix].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__NORMAL_SPRITE;
vdp1.vram.cmd[cmd_ix].LINK = 0;
vdp1.vram.cmd[cmd_ix].PMOD = PMOD__ECD | PMOD__COLOR_MODE__COLOR_BANK_256;
vdp1.vram.cmd[cmd_ix].COLR = color_address; // non-palettized (rgb15) color data
vdp1.vram.cmd[cmd_ix].SRCA = SRCA(character_address + bitmap.offset);
vdp1.vram.cmd[cmd_ix].SIZE = SIZE__X(bitmap.pitch) | SIZE__Y(bitmap.rows);
vdp1.vram.cmd[cmd_ix].XA = (x + metrics.horiBearingX) >> 6;
vdp1.vram.cmd[cmd_ix].YA = (y - metrics.horiBearingY) >> 6;
x += metrics.horiAdvance;
cmd_ix++;
}
return cmd_ix;
}
static const char16_t _string[] = u"「ブルースパン」";
void main()
{
uint32_t color_address, character_address;
uint32_t top = (sizeof (union vdp1_vram));
constexpr uint32_t colors = 256;
constexpr uint32_t color_bank = 0; // completely random and arbitrary value
uint8_t * data8 = reinterpret_cast<uint8_t*>(&_ipafont_data_start);
uint32_t * data32 = reinterpret_cast<uint32_t*>(&_ipafont_data_start);
const uint32_t glyph_index = data32[0];
const int32_t bitmap_offset = data32[1];
const int32_t face_height = data32[2];
const glyph * glyphs = reinterpret_cast<glyph*>(&data32[3]);
// there are three 32-bit fields before the start of `glyphs`
const uint8_t * glyph_bitmaps = reinterpret_cast<uint8_t*>(&data8[((sizeof (int32_t)) * 3) + glyph_index * (sizeof (glyph))]);
top = character_address = pixel_data(top, glyph_bitmaps, bitmap_offset);
color_palette(colors, color_bank);
// For color bank color, COLR is concatenated bitwise with pixel data. See
// Figure 6.17 in the VDP1 manual.
color_address = color_bank << 8;
// DISP: Please make sure to change this bit from 0 to 1 during V blank.
vdp2.reg.TVMD = ( TVMD__DISP | TVMD__LSMD__NON_INTERLACE
| TVMD__VRESO__240 | TVMD__HRESO__NORMAL_320);
// disable all VDP2 backgrounds (e.g: the Sega bios logo)
vdp2.reg.BGON = 0;
// VDP2 User's Manual:
// "When sprite data is in an RGB format, sprite register 0 is selected"
// "When the value of a priority number is 0h, it is read as transparent"
//
// From a VDP2 perspective: in VDP1 16-color lookup table mode, VDP1 is still
// sending RGB data to VDP2. This sprite color data as configured in
// `color_lookup_table` from a VDP2 priority perspective uses sprite register 0.
//
// The power-on value of PRISA is zero. Set the priority for sprite register 0
// to some number greater than zero, so that the color data is not interpreted
// as "transparent".
vdp2.reg.PRISA = PRISA__S0PRIN(1); // Sprite register 0 PRIority Number
/* TVM settings must be performed from the second H-blank IN interrupt after the
V-blank IN interrupt to the H-blank IN interrupt immediately after the V-blank
OUT interrupt. */
// "normal" display resolution, 16 bits per pixel, 512x256 framebuffer
vdp1.reg.TVMR = TVMR__TVM__NORMAL;
// swap framebuffers every 1 cycle; non-interlace
vdp1.reg.FBCR = 0;
// during a framebuffer erase cycle, write the color "black" to each pixel
constexpr uint16_t black = 0x0000;
vdp1.reg.EWDR = black;
// the EWLR/EWRR macros use somewhat nontrivial math for the X coordinates
// erase upper-left coordinate
vdp1.reg.EWLR = EWLR__16BPP_X1(0) | EWLR__Y1(0);
// erase lower-right coordinate
vdp1.reg.EWRR = EWRR__16BPP_X3(319) | EWRR__Y3(239);
vdp1.vram.cmd[0].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__SYSTEM_CLIP_COORDINATES;
vdp1.vram.cmd[0].LINK = 0;
vdp1.vram.cmd[0].XC = 319;
vdp1.vram.cmd[0].YC = 239;
vdp1.vram.cmd[1].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__LOCAL_COORDINATE;
vdp1.vram.cmd[1].LINK = 0;
vdp1.vram.cmd[1].XA = 0;
vdp1.vram.cmd[1].YA = 0;
uint32_t cmd_ix = 2;
cmd_ix = draw_utf16_string(color_address,
character_address,
glyphs,
cmd_ix,
_string,
((sizeof (_string)) / (sizeof (_string[0]))) - 1);
vdp1.vram.cmd[cmd_ix].CTRL = CTRL__END;
cmd_ix++;
// start drawing (execute the command list) on every frame
vdp1.reg.PTMR = PTMR__PTM__FRAME_CHANGE;
}
extern "C"
void start(void)
{
main();
while (1) {}
}