221 lines
6.5 KiB
C++

#include <stdint.h>
#include "vdp1.h"
#include "vdp2.h"
#include "scsp.h"
#include "smpc.h"
#include "../common/copy.hpp"
extern void * _ecclesia_adpcm_start __asm("_binary_ecclesia_adpcm_start");
extern void * _ecclesia_adpcm_size __asm("_binary_ecclesia_adpcm_size");
// table of index changes
static const int8_t index_table[16] = {
-1, -1, -1, -1, 2, 4, 6, 8,
-1, -1, -1, -1, 2, 4, 6, 8
};
// quantizer lookup table
static const int16_t step_size_table[89] = {
7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 ,
16 , 17 , 19 , 21 , 23 , 25 , 28 , 31 ,
34 , 37 , 41 , 45 , 50 , 55 , 60 , 66 ,
73 , 80 , 88 , 97 , 107 , 118 , 130 , 143 ,
157 , 173 , 190 , 209 , 230 , 253 , 279 , 307 ,
337 , 371 , 408 , 449 , 494 , 544 , 598 , 658 ,
724 , 796 , 876 , 963 , 1060 , 1166 , 1282 , 1411 ,
1552 , 1707 , 1878 , 2066 , 2272 , 2499 , 2749 , 3024 ,
3327 , 3660 , 4026 , 4428 , 4871 , 5358 , 5894 , 6484 ,
7132 , 7845 , 8630 , 9493 , 10442 , 11487 , 12635 , 13899 ,
15289 , 16818 , 18500 , 20350 , 22385 , 24623 , 27086 , 29794 ,
32767
};
struct adpcm_state {
int32_t predicted_sample;
int32_t index;
int32_t step_size;
};
static struct adpcm_state state;
void __attribute__ ((noinline)) init_state()
{
state.predicted_sample = 0;
state.index = 0;
state.step_size = 7;
}
int16_t decode_sample(int sample)
{
int difference = 0;
if (sample & 0b100)
difference += state.step_size;
if (sample & 0b010)
difference += state.step_size >> 1;
if (sample & 0b001)
difference += state.step_size >> 2;
difference += state.step_size >> 3;
if (sample & 0b1000) {
difference = -difference;
}
state.predicted_sample += difference;
if (state.predicted_sample > 32767)
state.predicted_sample = 32767;
if (state.predicted_sample < -32768)
state.predicted_sample = -32768;
state.index += index_table[sample];
if (state.index < 0)
state.index = 0;
if (state.index > 88)
state.index = 88;
state.step_size = step_size_table[state.index];
return state.predicted_sample;
}
void snd_init()
{
while ((smpc.reg.SF & 1) != 0);
smpc.reg.SF = 1;
smpc.reg.COMREG = COMREG__SNDOFF;
while (smpc.reg.OREG[31].val != OREG31__SNDOFF);
scsp.reg.ctrl.MIXER = MIXER__MEM4MB;
volatile uint32_t * dsp_steps = reinterpret_cast<volatile uint32_t *>(&(scsp.reg.dsp.STEP[0].MPRO[0]));
fill<volatile uint32_t>(dsp_steps, 0, (sizeof (scsp.reg.dsp.STEP)));
for (int i = 0; i < 32; i++) {
scsp.reg.slot[i].SA = 0;
scsp.reg.slot[i].MIXER = 0;
}
scsp.reg.ctrl.MIXER = MIXER__MEM4MB | MIXER__MVOL(0xf);
}
void __attribute__ ((noinline)) decode_chunk(volatile uint16_t * dst, const uint8_t * src, int samples)
{
for (int i = 0; i < samples / 2; i++) {
uint8_t b = src[i];
int nib0 = (b >> 0) & 0xf;
int nib1 = (b >> 4) & 0xf;
dst[i * 2 + 0] = decode_sample(nib0);
dst[i * 2 + 1] = decode_sample(nib1);
}
}
void snd_step()
{
const uint8_t * buf = reinterpret_cast<uint8_t*>(&_ecclesia_adpcm_start);
const uint32_t size = reinterpret_cast<uint32_t>(&_ecclesia_adpcm_size);
constexpr uint32_t chunk_samples = 16384 / 2;
decode_chunk(&scsp.ram.u16[0], buf, chunk_samples);
scsp_slot& slot = scsp.reg.slot[0];
// start address (bytes)
slot.SA = SA__KYONB | SA__LPCTL__NORMAL | SA__SA(0); // kx kb sbctl[1:0] ssctl[1:0] lpctl[1:0] 8b sa[19:0]
slot.LSA = 0; // loop start address (samples)
slot.LEA = chunk_samples * 2; // loop end address (samples)
//slot.EG = EG__EGHOLD; // d2r d1r ho ar krs dl rr
slot.EG = EG__AR(0x1F) | EG__D1R(0x00) | EG__D2R(0x00) | EG__RR(0x1F);
slot.FM = 0; // stwinh sdir tl mdl mdxsl mdysl
slot.PITCH = PITCH__OCT(-1) | PITCH__FNS(0); // oct fns
slot.LFO = 0; // lfof plfows
slot.MIXER = MIXER__DISDL(0b110); // disdl dipan efsdl efpan
slot.LOOP |= LOOP__KYONEX;
uint32_t offset = 1;
uint32_t chunk = 1;
constexpr uint32_t timer_a_interrupt = (1 << 6);
scsp.reg.ctrl.TIMA = TIMA__TACTL(7)
| TIMA__TIMA(128);
scsp.reg.ctrl.SCIRE = timer_a_interrupt;
while (1) {
decode_chunk(&scsp.ram.u16[chunk_samples * chunk],
&buf[(chunk_samples * offset) / 2],
chunk_samples);
chunk = !chunk;
offset = offset + 1;
if (chunk_samples * offset > size * 2) {
offset = 0;
}
/*
uint32_t sample = 0;
const uint32_t target = chunk_samples * 2;
constexpr uint32_t sample_interval = (1 << 10);
while (sample < target) {
scsp.reg.ctrl.SCIRE = sample_interval;
while (!(scsp.reg.ctrl.SCIPD & sample_interval));
sample++;
}
*/
while (!(scsp.reg.ctrl.SCIPD & timer_a_interrupt));
scsp.reg.ctrl.TIMA = TIMA__TACTL(7)
| TIMA__TIMA(128);
scsp.reg.ctrl.SCIRE = timer_a_interrupt;
}
}
extern "C"
void main() __attribute__((section(".text.main")));
void main()
{
// DISP: Please make sure to change this bit from 0 to 1 during V blank.
vdp2.reg.TVMD = ( TVMD__DISP | TVMD__LSMD__NON_INTERLACE
| TVMD__VRESO__240 | TVMD__HRESO__NORMAL_320);
// VDP2 User's Manual:
// "When sprite data is in an RGB format, sprite register 0 is selected"
// "When the value of a priority number is 0h, it is read as transparent"
//
// The power-on value of PRISA is zero. Set the priority for sprite register 0
// to some number greater than zero, so that the color data is not interpreted
// as "transparent".
vdp2.reg.PRISA = PRISA__S0PRIN(1); // Sprite register 0 Priority Number
/* TVM settings must be performed from the second H-blank IN interrupt after the
V-blank IN interrupt to the H-blank IN interrupt immediately after the V-blank
OUT interrupt. */
// "normal" display resolution, 16 bits per pixel, 512x256 framebuffer
vdp1.reg.TVMR = TVMR__TVM__NORMAL;
// swap framebuffers every 1 cycle; non-interlace
vdp1.reg.FBCR = 0;
// erase upper-left coordinate
vdp1.reg.EWLR = EWLR__16BPP_X1(0) | EWLR__Y1(0);
// erase lower-right coordinate
vdp1.reg.EWRR = EWRR__16BPP_X3(319) | EWRR__Y3(239);
// during a framebuffer erase cycle, write the color "black" to each pixel
const uint16_t black = 1 << 15 | 0x00ff;
vdp1.reg.EWDR = black;
vdp1.vram.cmd[0].CTRL = CTRL__END;
init_state();
snd_init();
snd_step();
const uint16_t blue = 1 << 15 | 0x7f00;
vdp1.reg.EWDR = blue;
vdp2.reg.BGON = 0;
// start drawing (execute the command list) on every frame
vdp1.reg.PTMR = PTMR__PTM__FRAME_CHANGE;
while (1);
}