This improves ttf-convert slightly: - variable size glyphs - initialize metrics for glyphs with zero-size bitmaps (e.g "space") - move the font/serialization structures to a common header The keyboard example includes keyboard layout data for the HSS-0129 (Japanese) Sega Saturn keyboard.
214 lines
6.9 KiB
C++
214 lines
6.9 KiB
C++
#include <stdint.h>
|
|
#include "vdp2.h"
|
|
#include "vdp1.h"
|
|
|
|
#include "../common/font.hpp"
|
|
|
|
extern void * _ipafont_data_start __asm("_binary_res_ipapgothic_font_bin_start");
|
|
|
|
constexpr inline uint16_t rgb15_gray(uint32_t intensity)
|
|
{
|
|
return ((intensity & 31) << 10) // blue
|
|
| ((intensity & 31) << 5 ) // green
|
|
| ((intensity & 31) << 0 ); // red
|
|
}
|
|
|
|
void vdp2_color_palette(uint32_t colors, uint32_t color_bank)
|
|
{
|
|
/* generate a palette of 32 grays */
|
|
|
|
uint16_t * table = &vdp2.cram.u16[colors * color_bank];
|
|
|
|
for (uint32_t i = 0; i <= 31; i++) {
|
|
table[i] = rgb15_gray(i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
uint32_t character_pattern_table(const uint32_t top)
|
|
{
|
|
// Unlike vdp2 cell format, vdp1 sprites appear to be much more dimensionally
|
|
// flexible. The data is interpreted as a row-major packed array, where the
|
|
// row/horizontal stride is equal to the sprite width (as configured in the
|
|
// draw command). This is identical to how the input palette index data is
|
|
// structured, so there is no transformation to do here, only a plain memory
|
|
// copy.
|
|
|
|
// Multiply `buf_size` by one because this converts (indexed color) 8 bit pixels
|
|
// to 8 bit pixels. Round up to the nearest 0x20 (for an 8000 pixel/8000 byte
|
|
// image, this rounding is a no-op).
|
|
|
|
const uint32_t table_size = ((buf_size * 1) + 0x20 - 1) & (-0x20);
|
|
const uint32_t table_address = top - table_size;
|
|
uint16_t * table = &vdp1.vram.u16[(table_address / 2)];
|
|
|
|
// `table_size` is in bytes; divide by two to get uint16_t indicies.
|
|
uint32_t buf_ix = 0;
|
|
for (uint32_t table_ix = 0; table_ix < (table_size / 2); table_ix++) {
|
|
uint32_t tmp = buf[buf_ix];
|
|
|
|
table[table_ix] = (((tmp >> 8) & 0xff) << 8)
|
|
| (((tmp >> 0) & 0xff) << 0);
|
|
|
|
buf_ix += 1;
|
|
}
|
|
|
|
return table_address;
|
|
}
|
|
*/
|
|
|
|
template <typename T>
|
|
void copy(T * dst, const T * src, int32_t n) noexcept
|
|
{
|
|
while (n > 0) {
|
|
*dst++ = *src++;
|
|
n -= (sizeof (T));
|
|
}
|
|
}
|
|
|
|
uint32_t pixel_data(const uint32_t top, const uint8_t * glyph_bitmaps, const uint32_t bitmap_offset)
|
|
{
|
|
const uint32_t * buf = reinterpret_cast<const uint32_t *>(&glyph_bitmaps[0]);
|
|
|
|
const uint32_t table_size = (bitmap_offset + 0x20 - 1) & (-0x20);
|
|
const uint32_t table_address = top - table_size;
|
|
|
|
uint32_t * table = &vdp1.vram.u32[(table_address / 4)];
|
|
|
|
copy<uint32_t>(table, buf, bitmap_offset);
|
|
|
|
return table_address;
|
|
}
|
|
|
|
uint32_t draw_utf16_string(const uint32_t color_address,
|
|
const uint32_t character_address,
|
|
const uint32_t char_code_offset,
|
|
const glyph * glyphs,
|
|
uint32_t cmd_ix,
|
|
const char16_t * string,
|
|
const uint32_t length)
|
|
{
|
|
int32_t x = 8 << 6;
|
|
int32_t y = 100 << 6;
|
|
|
|
for (uint32_t i = 0; i < length; i++) {
|
|
const char16_t c = string[i];
|
|
//assert(c <= char_code_offset);
|
|
const uint16_t c_offset = c - char_code_offset;
|
|
|
|
const glyph_bitmap& bitmap = glyphs[c_offset].bitmap;
|
|
const glyph_metrics& metrics = glyphs[c_offset].metrics;
|
|
|
|
vdp1.vram.cmd[cmd_ix].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__NORMAL_SPRITE;
|
|
vdp1.vram.cmd[cmd_ix].LINK = 0;
|
|
vdp1.vram.cmd[cmd_ix].PMOD = PMOD__ECD | PMOD__COLOR_MODE__COLOR_BANK_256;
|
|
vdp1.vram.cmd[cmd_ix].COLR = color_address; // non-palettized (rgb15) color data
|
|
vdp1.vram.cmd[cmd_ix].SRCA = SRCA(character_address + bitmap.offset);
|
|
vdp1.vram.cmd[cmd_ix].SIZE = SIZE__X(bitmap.pitch) | SIZE__Y(bitmap.rows);
|
|
vdp1.vram.cmd[cmd_ix].XA = (x + metrics.horiBearingX) >> 6;
|
|
vdp1.vram.cmd[cmd_ix].YA = (y - metrics.horiBearingY) >> 6;
|
|
|
|
x += metrics.horiAdvance;
|
|
|
|
cmd_ix++;
|
|
}
|
|
|
|
return cmd_ix;
|
|
}
|
|
|
|
static const char16_t _string[] = u"「ブルースパン」";
|
|
|
|
void main()
|
|
{
|
|
uint32_t color_address, character_address;
|
|
uint32_t top = (sizeof (union vdp1_vram));
|
|
constexpr uint32_t colors = 256;
|
|
constexpr uint32_t color_bank = 0; // completely random and arbitrary value
|
|
|
|
uint8_t * data = reinterpret_cast<uint8_t*>(&_ipafont_data_start);
|
|
|
|
const font * font = reinterpret_cast<struct font*>(&data[0]);
|
|
const glyph * glyphs = reinterpret_cast<struct glyph*>(&data[(sizeof (struct font))]);
|
|
// there are three 32-bit fields before the start of `glyphs`
|
|
const uint8_t * glyph_bitmaps = &data[(sizeof (struct font)) + ((sizeof (struct glyph)) * font->glyph_index)];
|
|
|
|
top = character_address = pixel_data(top, glyph_bitmaps, font->bitmap_offset);
|
|
|
|
vdp2_color_palette(colors, color_bank);
|
|
// For color bank color, COLR is concatenated bitwise with pixel data. See
|
|
// Figure 6.17 in the VDP1 manual.
|
|
color_address = color_bank << 8;
|
|
|
|
// DISP: Please make sure to change this bit from 0 to 1 during V blank.
|
|
vdp2.reg.TVMD = ( TVMD__DISP | TVMD__LSMD__NON_INTERLACE
|
|
| TVMD__VRESO__240 | TVMD__HRESO__NORMAL_320);
|
|
|
|
// disable all VDP2 backgrounds (e.g: the Sega bios logo)
|
|
vdp2.reg.BGON = 0;
|
|
|
|
// VDP2 User's Manual:
|
|
// "When sprite data is in an RGB format, sprite register 0 is selected"
|
|
// "When the value of a priority number is 0h, it is read as transparent"
|
|
//
|
|
// From a VDP2 perspective: in VDP1 16-color lookup table mode, VDP1 is still
|
|
// sending RGB data to VDP2. This sprite color data as configured in
|
|
// `color_lookup_table` from a VDP2 priority perspective uses sprite register 0.
|
|
//
|
|
// The power-on value of PRISA is zero. Set the priority for sprite register 0
|
|
// to some number greater than zero, so that the color data is not interpreted
|
|
// as "transparent".
|
|
vdp2.reg.PRISA = PRISA__S0PRIN(1); // Sprite register 0 PRIority Number
|
|
|
|
/* TVM settings must be performed from the second H-blank IN interrupt after the
|
|
V-blank IN interrupt to the H-blank IN interrupt immediately after the V-blank
|
|
OUT interrupt. */
|
|
// "normal" display resolution, 16 bits per pixel, 512x256 framebuffer
|
|
vdp1.reg.TVMR = TVMR__TVM__NORMAL;
|
|
|
|
// swap framebuffers every 1 cycle; non-interlace
|
|
vdp1.reg.FBCR = 0;
|
|
|
|
// during a framebuffer erase cycle, write the color "black" to each pixel
|
|
constexpr uint16_t black = 0x0000;
|
|
vdp1.reg.EWDR = black;
|
|
|
|
// the EWLR/EWRR macros use somewhat nontrivial math for the X coordinates
|
|
// erase upper-left coordinate
|
|
vdp1.reg.EWLR = EWLR__16BPP_X1(0) | EWLR__Y1(0);
|
|
|
|
// erase lower-right coordinate
|
|
vdp1.reg.EWRR = EWRR__16BPP_X3(319) | EWRR__Y3(239);
|
|
|
|
vdp1.vram.cmd[0].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__SYSTEM_CLIP_COORDINATES;
|
|
vdp1.vram.cmd[0].LINK = 0;
|
|
vdp1.vram.cmd[0].XC = 319;
|
|
vdp1.vram.cmd[0].YC = 239;
|
|
|
|
vdp1.vram.cmd[1].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__LOCAL_COORDINATE;
|
|
vdp1.vram.cmd[1].LINK = 0;
|
|
vdp1.vram.cmd[1].XA = 0;
|
|
vdp1.vram.cmd[1].YA = 0;
|
|
|
|
uint32_t cmd_ix = 2;
|
|
cmd_ix = draw_utf16_string(color_address,
|
|
character_address,
|
|
font->char_code_offset,
|
|
glyphs,
|
|
cmd_ix,
|
|
_string,
|
|
((sizeof (_string)) / (sizeof (_string[0]))) - 1);
|
|
|
|
vdp1.vram.cmd[cmd_ix].CTRL = CTRL__END;
|
|
cmd_ix++;
|
|
|
|
// start drawing (execute the command list) on every frame
|
|
vdp1.reg.PTMR = PTMR__PTM__FRAME_CHANGE;
|
|
}
|
|
|
|
extern "C"
|
|
void start(void)
|
|
{
|
|
main();
|
|
while (1) {}
|
|
}
|