492 lines
14 KiB
C++
492 lines
14 KiB
C++
#include <stdint.h>
|
|
#include "vdp1.h"
|
|
#include "vdp2.h"
|
|
#include "smpc.h"
|
|
#include "sh2.h"
|
|
#include "scu.h"
|
|
|
|
#include "../common/keyboard.hpp"
|
|
#include "../common/font.hpp"
|
|
#include "../common/draw_font.hpp"
|
|
#include "../common/palette.hpp"
|
|
#include "../common/vdp2_func.hpp"
|
|
|
|
/* begin font */
|
|
|
|
extern void * _dejavusans_start __asm("_binary_res_dejavusansmono_font_bin_start");
|
|
|
|
/* end font */
|
|
|
|
/* square stuff */
|
|
|
|
struct color {
|
|
uint8_t r;
|
|
uint8_t g;
|
|
uint8_t b;
|
|
};
|
|
|
|
const static color colors[16] = {
|
|
{255, 255, 255}, // (SPD / transparent) 0
|
|
{0, 255, 255}, // I (cyan) 1
|
|
{255, 255, 0}, // O (yellow) 2
|
|
{128, 0, 128}, // T (purple) 3
|
|
{0, 255, 0}, // S (green) 4
|
|
{0, 0, 255}, // J (blue) 5
|
|
{255, 0, 0}, // Z (red) 6
|
|
{255, 128, 0}, // L (orange) 7
|
|
{0}, // 8
|
|
{0}, // 9
|
|
{0}, // 10 (a)
|
|
{0}, // 11 (b)
|
|
{0}, // 12 (c)
|
|
{0}, // 13 (d)
|
|
{0}, // 14 (e)
|
|
{250, 128, 114} // (ECD) f
|
|
};
|
|
|
|
inline constexpr uint16_t rgb15(const color& color)
|
|
{
|
|
return ((color.b >> 3) << 10) // blue
|
|
| ((color.g >> 3) << 5 ) // green
|
|
| ((color.r >> 3) << 0 ); // red
|
|
}
|
|
|
|
uint32_t color_lookup_table(const uint32_t top)
|
|
{
|
|
// "The size of a color lookup table is 20H (32) bytes"
|
|
// (assume top is already aligned to 0x20)
|
|
const uint32_t table_address = top - 0x20;
|
|
|
|
// "The color lookup table defines the respective color codes of 16 colors in
|
|
// VRAM as 16-bit data"
|
|
uint16_t * table = &vdp1.vram.u16[(table_address / 2)];
|
|
|
|
uint32_t buf_ix = 0;
|
|
for (uint32_t i = 0; i < 16; i++) {
|
|
// there is a typo in "5.2 Color Lookup Tables" "If RGB code, MSB = 0"
|
|
// should be "MSB = 1". The "MSB = 0" claim is correctly contradicted later.
|
|
|
|
table[i] = 1 << 15 | rgb15(colors[i]);
|
|
// _mai_data_pal is rgb24, 3 bytes per color
|
|
buf_ix += 3;
|
|
}
|
|
|
|
return table_address;
|
|
}
|
|
|
|
template <class T>
|
|
inline constexpr T round(const T n)
|
|
{
|
|
return (n + 0x20 - 1) & (-0x20);
|
|
}
|
|
|
|
constexpr uint32_t sprite_stride = 16;
|
|
constexpr uint32_t sprite_height = 10;
|
|
constexpr uint32_t sprite_width = 10;
|
|
|
|
uint32_t character_pattern_table(const uint32_t top, int color)
|
|
{
|
|
constexpr uint32_t canvas_size = sprite_stride * 10;
|
|
// 1 pixel = 4 bits
|
|
constexpr uint32_t table_size = round(canvas_size / 2);
|
|
const uint32_t table_address = top - table_size;
|
|
|
|
uint32_t * table = &vdp1.vram.u32[(table_address / 4)];
|
|
|
|
// `table_size` is in bytes; divide by two to get uint16_t indicies.
|
|
uint32_t table_ix = 0;
|
|
for (uint32_t row = 0; row < sprite_height; row++) {
|
|
table[table_ix++] =
|
|
(color << 28) | (color << 24) | (color << 20) | (color << 16)
|
|
| (color << 12) | (color << 8 ) | (color << 4 ) | (color << 0 );
|
|
|
|
// 0xf is the "end code" for 4-bit row/pixel data; there must be two
|
|
// bit-consecutive codes for vdp2 to interpret it as an end code.
|
|
constexpr int ecd = 0xf;
|
|
table[table_ix++] =
|
|
(color << 28) | (color << 24) | (ecd << 20) | (ecd << 16);
|
|
}
|
|
|
|
return table_address;
|
|
}
|
|
|
|
struct controller_state {
|
|
uint8_t up;
|
|
uint8_t down;
|
|
uint8_t left;
|
|
uint8_t right;
|
|
};
|
|
|
|
#define assert(n) if ((n) == 0) while (1);
|
|
|
|
enum intback_fsm {
|
|
PORT_STATUS = 0,
|
|
PERIPHERAL_ID,
|
|
DATA1,
|
|
DATA2,
|
|
DATA3,
|
|
DATA4,
|
|
FSM_NEXT
|
|
};
|
|
|
|
struct intback_state {
|
|
int fsm;
|
|
int controller_ix;
|
|
int port_ix;
|
|
controller_state controller[2];
|
|
};
|
|
|
|
static intback_state intback;
|
|
static int oreg_ix;
|
|
|
|
struct xy {
|
|
int x;
|
|
int y;
|
|
};
|
|
|
|
static xy foo[2] = {
|
|
{100, 100},
|
|
{200, 100}
|
|
};
|
|
|
|
uint32_t print_hex(char16_t * c, uint32_t len, uint32_t n)
|
|
{
|
|
uint32_t ret = 0;
|
|
|
|
while (len > 0) {
|
|
uint32_t nib = n & 0xf;
|
|
n = n >> 4;
|
|
|
|
if (nib > 9) {
|
|
nib += (97 - 10);
|
|
} else {
|
|
nib += (48 - 0);
|
|
}
|
|
|
|
c[--len] = nib;
|
|
|
|
ret++;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static struct draw_font::state font_state;
|
|
|
|
static uint32_t global_cmd_ix = 0;
|
|
|
|
void smpc_int(void) __attribute__ ((interrupt_handler));
|
|
void smpc_int(void) {
|
|
scu.reg.IST &= ~(IST__SMPC);
|
|
scu.reg.IMS = ~(IMS__SMPC | IMS__V_BLANK_IN);
|
|
|
|
if ((smpc.reg.SR & SR__PDL) != 0) {
|
|
// PDL == 1; 1st peripheral data
|
|
oreg_ix = 0;
|
|
intback.controller_ix = 0;
|
|
intback.port_ix = 0;
|
|
intback.fsm = PORT_STATUS;
|
|
}
|
|
|
|
int port_connected = 0;
|
|
int data_size = 0;
|
|
int peripheral_type;
|
|
(void)peripheral_type;
|
|
|
|
int kbd_bits = 0;
|
|
|
|
/*
|
|
This intback handling is oversimplified:
|
|
|
|
- up to 2 controllers may be connected
|
|
- multitaps are not parsed correctly
|
|
*/
|
|
while (oreg_ix < 32) {
|
|
reg8 const& oreg = smpc.reg.OREG[oreg_ix++].val;
|
|
switch (intback.fsm) {
|
|
case PORT_STATUS:
|
|
port_connected = (PORT_STATUS__CONNECTORS(oreg) == 1);
|
|
if (port_connected) {
|
|
assert(PORT_STATUS__MULTITAP_ID(oreg) == 0xf);
|
|
} else {
|
|
intback.fsm = FSM_NEXT;
|
|
}
|
|
break;
|
|
case PERIPHERAL_ID:
|
|
peripheral_type = PERIPHERAL_ID__TYPE(oreg);
|
|
data_size = PERIPHERAL_ID__DATA_SIZE(oreg);
|
|
break;
|
|
case DATA1:
|
|
{
|
|
controller_state& c = intback.controller[intback.controller_ix];
|
|
c.right = (DIGITAL__1__RIGHT & oreg) == 0;
|
|
c.left = (DIGITAL__1__LEFT & oreg) == 0;
|
|
c.down = (DIGITAL__1__DOWN & oreg) == 0;
|
|
c.up = (DIGITAL__1__UP & oreg) == 0;
|
|
}
|
|
break;
|
|
case DATA2:
|
|
break;
|
|
case DATA3:
|
|
kbd_bits = oreg & 0b1111;
|
|
break;
|
|
case DATA4:
|
|
{
|
|
char16_t str_num[2];
|
|
|
|
uint32_t keysym = oreg;
|
|
char16_t text[1];
|
|
|
|
static int32_t x = 8 << 6;
|
|
static int32_t y = 50 << 6;
|
|
|
|
if (kbd_bits & 0b1000) {
|
|
print_hex(str_num, 2, keysym);
|
|
|
|
enum keysym k = scancode_to_keysym(keysym);
|
|
int32_t c = keysym_to_char(k, false);
|
|
if (k != keysym::UNKNOWN && c != -1) {
|
|
text[0] = c;
|
|
x += draw_font::horizontal_string(font_state,
|
|
global_cmd_ix, // modified
|
|
&text[0],
|
|
1,
|
|
x,
|
|
y);
|
|
|
|
vdp1.vram.cmd[global_cmd_ix].CTRL = CTRL__END;
|
|
}
|
|
|
|
} else if (kbd_bits & 0b0001) {
|
|
str_num[0] = 'q';
|
|
str_num[1] = 'q';
|
|
}
|
|
|
|
int32_t qx = 8 << 6;
|
|
int32_t qy = 150 << 6;
|
|
uint32_t cmd_ix = 4;
|
|
|
|
draw_font::horizontal_string(font_state,
|
|
cmd_ix, // modified
|
|
&str_num[0],
|
|
2,
|
|
qx,
|
|
qy);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if ((intback.fsm >= PERIPHERAL_ID && data_size <= 0) || intback.fsm == FSM_NEXT) {
|
|
if (intback.port_ix == 1)
|
|
break;
|
|
else {
|
|
intback.port_ix++;
|
|
intback.controller_ix++;
|
|
intback.fsm = PORT_STATUS;
|
|
}
|
|
} else {
|
|
intback.fsm++;
|
|
data_size--;
|
|
}
|
|
}
|
|
|
|
if ((smpc.reg.SR & SR__NPE) != 0) {
|
|
smpc.reg.IREG[0].val = INTBACK__IREG0__CONTINUE;
|
|
} else {
|
|
smpc.reg.IREG[0].val = INTBACK__IREG0__BREAK;
|
|
}
|
|
}
|
|
|
|
void v_blank_in_int(void) __attribute__ ((interrupt_handler));
|
|
void v_blank_in_int() {
|
|
scu.reg.IST &= ~(IST__V_BLANK_IN);
|
|
scu.reg.IMS = ~(IMS__SMPC | IMS__V_BLANK_IN);
|
|
|
|
sh2.reg.FRC.H = 0;
|
|
sh2.reg.FRC.L = 0;
|
|
sh2.reg.FTCSR = 0; // clear flags
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
const controller_state& c = intback.controller[i];
|
|
if (c.left) vdp1.vram.cmd[2 + i].XA = --foo[i].x;
|
|
if (c.right) vdp1.vram.cmd[2 + i].XA = ++foo[i].x;
|
|
if (c.up) vdp1.vram.cmd[2 + i].YA = --foo[i].y;
|
|
if (c.down) vdp1.vram.cmd[2 + i].YA = ++foo[i].y;
|
|
}
|
|
|
|
// wait 300us, as specified in the SMPC manual.
|
|
// It appears reading FRC.H is mandatory and *must* occur before FRC.L on real
|
|
// hardware.
|
|
while ((sh2.reg.FTCSR & FTCSR__OVF) == 0 && sh2.reg.FRC.H == 0 && sh2.reg.FRC.L < 63);
|
|
|
|
if ((vdp2.reg.TVSTAT & TVSTAT__VBLANK) != 0) {
|
|
// on real hardware, SF contains uninitialized garbage bits other than the
|
|
// lsb.
|
|
while ((smpc.reg.SF & 1) != 0);
|
|
|
|
smpc.reg.SF = 0;
|
|
|
|
smpc.reg.IREG[0].val = INTBACK__IREG0__STATUS_DISABLE;
|
|
smpc.reg.IREG[1].val = ( INTBACK__IREG1__PERIPHERAL_DATA_ENABLE
|
|
| INTBACK__IREG1__PORT2_15BYTE
|
|
| INTBACK__IREG1__PORT1_15BYTE
|
|
);
|
|
smpc.reg.IREG[2].val = INTBACK__IREG2__MAGIC;
|
|
|
|
smpc.reg.COMREG = COMREG__INTBACK;
|
|
}
|
|
}
|
|
|
|
uint32_t init_font(uint32_t top)
|
|
{
|
|
// 256 is the number of colors in the color palette, not the number of grays
|
|
// that are used by the font.
|
|
constexpr uint32_t colors_per_palette = 256;
|
|
constexpr uint32_t color_bank_index = 0; // completely random and arbitrary value
|
|
|
|
palette::vdp2_cram_32grays(colors_per_palette, color_bank_index);
|
|
// For color bank color, COLR is concatenated bitwise with pixel data. See
|
|
// Figure 6.17 in the VDP1 manual.
|
|
font_state.color_address = color_bank_index << 8;
|
|
|
|
top = font_data(&_dejavusans_start, top, font_state);
|
|
|
|
return top;
|
|
}
|
|
|
|
void main()
|
|
{
|
|
uint32_t top = (sizeof (union vdp1_vram));
|
|
|
|
top = init_font(top);
|
|
|
|
// begin squares
|
|
|
|
uint32_t color_address, character_address[16];
|
|
top = color_address = color_lookup_table(top);
|
|
top = character_address[0] = character_pattern_table(top, 1);
|
|
top = character_address[1] = character_pattern_table(top, 2);
|
|
|
|
// wait for the beginning of a V blank
|
|
v_blank_in();
|
|
|
|
// DISP: Please make sure to change this bit from 0 to 1 during V blank.
|
|
vdp2.reg.TVMD = ( TVMD__DISP | TVMD__LSMD__NON_INTERLACE
|
|
| TVMD__VRESO__240 | TVMD__HRESO__NORMAL_320);
|
|
|
|
// disable all VDP2 backgrounds (e.g: the Sega bios logo)
|
|
vdp2.reg.BGON = 0;
|
|
|
|
// zeroize BACK color
|
|
vdp2.reg.BKTAU = 0;
|
|
vdp2.reg.BKTAL = 0;
|
|
vdp2.vram.u16[0] = 0;
|
|
|
|
// VDP2 User's Manual:
|
|
// "When sprite data is in an RGB format, sprite register 0 is selected"
|
|
// "When the value of a priority number is 0h, it is read as transparent"
|
|
//
|
|
// From a VDP2 perspective: in VDP1 16-color lookup table mode, VDP1 is still
|
|
// sending RGB data to VDP2. This sprite color data as configured in
|
|
// `color_lookup_table` from a VDP2 priority perspective uses sprite register 0.
|
|
//
|
|
// The power-on value of PRISA is zero. Set the priority for sprite register 0
|
|
// to some number greater than zero, so that the color data is not interpreted
|
|
// as "transparent".
|
|
vdp2.reg.PRISA = PRISA__S0PRIN(1); // Sprite register 0 PRIority Number
|
|
|
|
/* TVM settings must be performed from the second H-blank IN interrupt after the
|
|
V-blank IN interrupt to the H-blank IN interrupt immediately after the V-blank
|
|
OUT interrupt. */
|
|
// "normal" display resolution, 16 bits per pixel, 512x256 framebuffer
|
|
vdp1.reg.TVMR = TVMR__TVM__NORMAL;
|
|
|
|
// swap framebuffers every 1 cycle; non-interlace
|
|
vdp1.reg.FBCR = 0;
|
|
|
|
// during a framebuffer erase cycle, write the color "black" to each pixel
|
|
constexpr uint16_t black = 0x0000;
|
|
vdp1.reg.EWDR = black;
|
|
|
|
// the EWLR/EWRR macros use somewhat nontrivial math for the X coordinates
|
|
// erase upper-left coordinate
|
|
vdp1.reg.EWLR = EWLR__16BPP_X1(0) | EWLR__Y1(0);
|
|
|
|
// erase lower-right coordinate
|
|
vdp1.reg.EWRR = EWRR__16BPP_X3(319) | EWRR__Y3(239);
|
|
|
|
vdp1.vram.cmd[0].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__SYSTEM_CLIP_COORDINATES;
|
|
vdp1.vram.cmd[0].LINK = 0;
|
|
vdp1.vram.cmd[0].XC = 319;
|
|
vdp1.vram.cmd[0].YC = 239;
|
|
|
|
vdp1.vram.cmd[1].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__LOCAL_COORDINATE;
|
|
vdp1.vram.cmd[1].LINK = 0;
|
|
vdp1.vram.cmd[1].XA = 0;
|
|
vdp1.vram.cmd[1].YA = 0;
|
|
|
|
vdp1.vram.cmd[2].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__NORMAL_SPRITE;
|
|
vdp1.vram.cmd[2].LINK = 0;
|
|
// The "end code" is 0xf, which is being used in the mai sprite palette. If
|
|
// both transparency and end codes are enabled, it seems there are only 14
|
|
// usable colors in the 4-bit color mode.
|
|
vdp1.vram.cmd[2].PMOD = PMOD__COLOR_MODE__LOOKUP_TABLE_16;
|
|
// It appears Kronos does not correctly calculate the color address in the
|
|
// VDP1 debugger. Kronos will report FFFC when the actual color table address
|
|
// in this example is 7FFE0.
|
|
vdp1.vram.cmd[2].COLR = COLR__ADDRESS(color_address); // non-palettized (rgb15) color data
|
|
vdp1.vram.cmd[2].SRCA = SRCA(character_address[0]);
|
|
vdp1.vram.cmd[2].SIZE = SIZE__X(sprite_stride) | SIZE__Y(sprite_height);
|
|
vdp1.vram.cmd[2].XA = foo[0].x;
|
|
vdp1.vram.cmd[2].YA = foo[0].y;
|
|
|
|
vdp1.vram.cmd[3].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__NORMAL_SPRITE;
|
|
vdp1.vram.cmd[3].LINK = 0;
|
|
// The "end code" is 0xf, which is being used in the mai sprite palette. If
|
|
// both transparency and end codes are enabled, it seems there are only 14
|
|
// usable colors in the 4-bit color mode.
|
|
vdp1.vram.cmd[3].PMOD = PMOD__COLOR_MODE__LOOKUP_TABLE_16;
|
|
// It appears Kronos does not correctly calculate the color address in the
|
|
// VDP1 debugger. Kronos will report FFFC when the actual color table address
|
|
// in this example is 7FFE0.
|
|
vdp1.vram.cmd[3].COLR = COLR__ADDRESS(color_address); // non-palettized (rgb15) color data
|
|
vdp1.vram.cmd[3].SRCA = SRCA(character_address[1]);
|
|
vdp1.vram.cmd[3].SIZE = SIZE__X(sprite_stride) | SIZE__Y(sprite_height);
|
|
vdp1.vram.cmd[3].XA = foo[1].x;
|
|
vdp1.vram.cmd[3].YA = foo[1].y;
|
|
|
|
vdp1.vram.cmd[4].CTRL = CTRL__END;
|
|
vdp1.vram.cmd[5].CTRL = CTRL__END;
|
|
|
|
vdp1.vram.cmd[6].CTRL = CTRL__END;
|
|
global_cmd_ix = 6;
|
|
|
|
// start drawing (execute the command list) on every frame
|
|
vdp1.reg.PTMR = PTMR__PTM__FRAME_CHANGE;
|
|
|
|
// free-running timer
|
|
sh2.reg.TCR = TCR__CKS__INTERNAL_DIV128;
|
|
sh2.reg.FTCSR = 0;
|
|
|
|
// initialize smpc
|
|
smpc.reg.DDR1 = 0; // INPUT
|
|
smpc.reg.DDR2 = 0; // INPUT
|
|
smpc.reg.IOSEL = 0; // SMPC control
|
|
smpc.reg.EXLE = 0; //
|
|
|
|
// interrupts
|
|
sh2_vec[SCU_VEC__SMPC] = (u32)(&smpc_int);
|
|
sh2_vec[SCU_VEC__V_BLANK_IN] = (u32)(&v_blank_in_int);
|
|
|
|
scu.reg.IST = 0;
|
|
scu.reg.IMS = ~(IMS__SMPC | IMS__V_BLANK_IN);
|
|
}
|
|
|
|
extern "C"
|
|
void start(void)
|
|
{
|
|
main();
|
|
while (1);
|
|
}
|