saturn-examples/smpc/input_intback.cpp

376 lines
11 KiB
C++

#include <stdint.h>
#include "vdp1.h"
#include "vdp2.h"
#include "smpc.h"
#include "sh2.h"
#include "scu.h"
struct color {
uint8_t r;
uint8_t g;
uint8_t b;
};
const static color colors[16] = {
{255, 255, 255}, // (SPD / transparent) 0
{0, 255, 255}, // I (cyan) 1
{255, 255, 0}, // O (yellow) 2
{128, 0, 128}, // T (purple) 3
{0, 255, 0}, // S (green) 4
{0, 0, 255}, // J (blue) 5
{255, 0, 0}, // Z (red) 6
{255, 128, 0}, // L (orange) 7
{0}, // 8
{0}, // 9
{0}, // 10 (a)
{0}, // 11 (b)
{0}, // 12 (c)
{0}, // 13 (d)
{0}, // 14 (e)
{250, 128, 114} // (ECD) f
};
inline constexpr uint16_t rgb15(const color& color)
{
return ((color.b >> 3) << 10) // blue
| ((color.g >> 3) << 5 ) // green
| ((color.r >> 3) << 0 ); // red
}
uint32_t color_lookup_table(const uint32_t top)
{
// "The size of a color lookup table is 20H (32) bytes"
// (assume top is already aligned to 0x20)
const uint32_t table_address = top - 0x20;
// "The color lookup table defines the respective color codes of 16 colors in
// VRAM as 16-bit data"
uint16_t * table = &vdp1.vram.u16[(table_address / 2)];
uint32_t buf_ix = 0;
for (uint32_t i = 0; i < 16; i++) {
// there is a typo in "5.2 Color Lookup Tables" "If RGB code, MSB = 0"
// should be "MSB = 1". The "MSB = 0" claim is correctly contradicted later.
table[i] = 1 << 15 | rgb15(colors[i]);
// _mai_data_pal is rgb24, 3 bytes per color
buf_ix += 3;
}
return table_address;
}
template <class T>
inline constexpr T round(const T n)
{
return (n + 0x20 - 1) & (-0x20);
}
constexpr uint32_t sprite_stride = 16;
constexpr uint32_t sprite_height = 10;
constexpr uint32_t sprite_width = 10;
uint32_t character_pattern_table(const uint32_t top, int color)
{
constexpr uint32_t canvas_size = sprite_stride * 10;
// 1 pixel = 4 bits
constexpr uint32_t table_size = round(canvas_size / 2);
const uint32_t table_address = top - table_size;
uint32_t * table = &vdp1.vram.u32[(table_address / 4)];
// `table_size` is in bytes; divide by two to get uint16_t indicies.
uint32_t table_ix = 0;
for (uint32_t row = 0; row < sprite_height; row++) {
table[table_ix++] =
(color << 28) | (color << 24) | (color << 20) | (color << 16)
| (color << 12) | (color << 8 ) | (color << 4 ) | (color << 0 );
// 0xf is the "end code" for 4-bit row/pixel data; there must be two
// bit-consecutive codes for vdp2 to interpret it as an end code.
constexpr int ecd = 0xf;
table[table_ix++] =
(color << 28) | (color << 24) | (ecd << 20) | (ecd << 16);
}
return table_address;
}
struct controller_state {
uint8_t up;
uint8_t down;
uint8_t left;
uint8_t right;
};
#define assert(n) if ((n) == 0) while (1);
enum intback_fsm {
PORT_STATUS = 0,
PERIPHERAL_ID,
DATA1,
DATA2,
FSM_NEXT,
};
struct intback_state {
int fsm;
int controller_ix;
int port_ix;
controller_state controller[2];
};
static intback_state intback;
static int oreg_ix;
struct xy {
int x;
int y;
};
static xy foo[2] = {
{100, 100},
{200, 100}
};
void smpc_int(void) __attribute__ ((interrupt_handler));
void smpc_int(void) {
scu.reg.IST &= ~(IST__SMPC);
scu.reg.IMS = ~(IMS__SMPC | IMS__V_BLANK_IN);
if ((smpc.reg.SR & SR__PDL) != 0) {
// PDL == 1; 1st peripheral data
oreg_ix = 0;
intback.controller_ix = 0;
intback.port_ix = 0;
intback.fsm = PORT_STATUS;
}
int port_connected = 0;
/*
This intback handling is oversimplified:
- up to 2 controllers may be connected
- controller port 1 must be connected (could relax this)
- both controllers must be "digital pad" controllers
*/
while (oreg_ix < 31) {
reg8 const& oreg = smpc.reg.OREG[oreg_ix++].val;
switch (intback.fsm++) {
case PORT_STATUS:
port_connected = (PORT_STATUS__CONNECTORS(oreg) == 1);
if (port_connected) {
assert(PORT_STATUS__MULTITAP_ID(oreg) == 0xf);
} else {
intback.fsm = FSM_NEXT;
}
break;
case PERIPHERAL_ID:
assert(port_connected);
assert(PERIPHERAL_ID__DATA_SIZE(oreg) == 2);
break;
case DATA1:
assert(port_connected);
{
controller_state& c = intback.controller[intback.controller_ix];
c.right = (DIGITAL__1__RIGHT & oreg) == 0;
c.left = (DIGITAL__1__LEFT & oreg) == 0;
c.down = (DIGITAL__1__DOWN & oreg) == 0;
c.up = (DIGITAL__1__UP & oreg) == 0;
}
break;
case DATA2:
assert(port_connected);
// ignore data2
break;
}
if (intback.fsm == FSM_NEXT) {
if (intback.port_ix == 1)
break;
else {
intback.port_ix++;
intback.controller_ix++;
intback.fsm = PORT_STATUS;
}
}
}
if ((smpc.reg.SR & SR__NPE) != 0) {
smpc.reg.IREG[0].val = INTBACK__IREG0__CONTINUE;
} else {
smpc.reg.IREG[0].val = INTBACK__IREG0__BREAK;
}
}
void v_blank_in_int(void) __attribute__ ((interrupt_handler));
void v_blank_in_int() {
scu.reg.IST &= ~(IST__V_BLANK_IN);
scu.reg.IMS = ~(IMS__SMPC | IMS__V_BLANK_IN);
sh2.reg.FRC.H = 0;
sh2.reg.FRC.L = 0;
sh2.reg.FTCSR = 0; // clear flags
for (int i = 0; i < 2; i++) {
const controller_state& c = intback.controller[i];
if (c.left) vdp1.vram.cmd[2 + i].XA = --foo[i].x;
if (c.right) vdp1.vram.cmd[2 + i].XA = ++foo[i].x;
if (c.up) vdp1.vram.cmd[2 + i].YA = --foo[i].y;
if (c.down) vdp1.vram.cmd[2 + i].YA = ++foo[i].y;
}
// wait 300us, as specified in the SMPC manual.
// It appears reading FRC.H is mandatory and *must* occur before FRC.L on real
// hardware.
while ((sh2.reg.FTCSR & FTCSR__OVF) == 0 && sh2.reg.FRC.H == 0 && sh2.reg.FRC.L < 63);
if ((vdp2.reg.TVSTAT & TVSTAT__VBLANK) != 0) {
// on real hardware, SF contains uninitialized garbage bits other than the
// lsb.
while ((smpc.reg.SF & 1) != 0);
smpc.reg.SF = 0;
smpc.reg.IREG[0].val = INTBACK__IREG0__STATUS_DISABLE;
smpc.reg.IREG[1].val = ( INTBACK__IREG1__PERIPHERAL_DATA_ENABLE
| INTBACK__IREG1__PORT2_15BYTE
| INTBACK__IREG1__PORT1_15BYTE
);
smpc.reg.IREG[2].val = INTBACK__IREG2__MAGIC;
smpc.reg.COMREG = COMREG__INTBACK;
}
}
static inline void v_blank_in() {
/*
v
_____
____| |____
*/
while ((vdp2.reg.TVSTAT & TVSTAT__VBLANK) != 0);
while ((vdp2.reg.TVSTAT & TVSTAT__VBLANK) == 0);
}
void main()
{
uint32_t color_address, character_address[16];
uint32_t top = (sizeof (union vdp1_vram));
top = color_address = color_lookup_table(top);
top = character_address[0] = character_pattern_table(top, 1);
top = character_address[1] = character_pattern_table(top, 2);
// wait for the beginning of a V blank
v_blank_in();
// DISP: Please make sure to change this bit from 0 to 1 during V blank.
vdp2.reg.TVMD = ( TVMD__DISP | TVMD__LSMD__NON_INTERLACE
| TVMD__VRESO__240 | TVMD__HRESO__NORMAL_320);
// disable all VDP2 backgrounds (e.g: the Sega bios logo)
vdp2.reg.BGON = 0;
// zeroize BACK color
vdp2.reg.BKTAU = 0;
vdp2.reg.BKTAL = 0;
vdp2.vram.u16[0] = 0;
// VDP2 User's Manual:
// "When sprite data is in an RGB format, sprite register 0 is selected"
// "When the value of a priority number is 0h, it is read as transparent"
//
// From a VDP2 perspective: in VDP1 16-color lookup table mode, VDP1 is still
// sending RGB data to VDP2. This sprite color data as configured in
// `color_lookup_table` from a VDP2 priority perspective uses sprite register 0.
//
// The power-on value of PRISA is zero. Set the priority for sprite register 0
// to some number greater than zero, so that the color data is not interpreted
// as "transparent".
vdp2.reg.PRISA = PRISA__S0PRIN(1); // Sprite register 0 PRIority Number
/* TVM settings must be performed from the second H-blank IN interrupt after the
V-blank IN interrupt to the H-blank IN interrupt immediately after the V-blank
OUT interrupt. */
// "normal" display resolution, 16 bits per pixel, 512x256 framebuffer
vdp1.reg.TVMR = TVMR__TVM__NORMAL;
// swap framebuffers every 1 cycle; non-interlace
vdp1.reg.FBCR = 0;
// during a framebuffer erase cycle, write the color "black" to each pixel
constexpr uint16_t black = 0x0000;
vdp1.reg.EWDR = black;
// the EWLR/EWRR macros use somewhat nontrivial math for the X coordinates
// erase upper-left coordinate
vdp1.reg.EWLR = EWLR__16BPP_X1(0) | EWLR__Y1(0);
// erase lower-right coordinate
vdp1.reg.EWRR = EWRR__16BPP_X3(319) | EWRR__Y3(239);
vdp1.vram.cmd[0].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__SYSTEM_CLIP_COORDINATES;
vdp1.vram.cmd[0].LINK = 0;
vdp1.vram.cmd[0].XC = 319;
vdp1.vram.cmd[0].YC = 239;
vdp1.vram.cmd[1].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__LOCAL_COORDINATE;
vdp1.vram.cmd[1].LINK = 0;
vdp1.vram.cmd[1].XA = 0;
vdp1.vram.cmd[1].YA = 0;
vdp1.vram.cmd[2].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__NORMAL_SPRITE;
vdp1.vram.cmd[2].LINK = 0;
// The "end code" is 0xf, which is being used in the mai sprite palette. If
// both transparency and end codes are enabled, it seems there are only 14
// usable colors in the 4-bit color mode.
vdp1.vram.cmd[2].PMOD = PMOD__COLOR_MODE__LOOKUP_TABLE_16;
// It appears Kronos does not correctly calculate the color address in the
// VDP1 debugger. Kronos will report FFFC when the actual color table address
// in this example is 7FFE0.
vdp1.vram.cmd[2].COLR = COLR__LOOKUP_TABLE__ADDRESS(color_address); // non-palettized (rgb15) color data
vdp1.vram.cmd[2].SRCA = SRCA(character_address[0]);
vdp1.vram.cmd[2].SIZE = SIZE__X(sprite_stride) | SIZE__Y(sprite_height);
vdp1.vram.cmd[2].XA = foo[0].x;
vdp1.vram.cmd[2].YA = foo[0].y;
vdp1.vram.cmd[3].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__NORMAL_SPRITE;
vdp1.vram.cmd[3].LINK = 0;
// The "end code" is 0xf, which is being used in the mai sprite palette. If
// both transparency and end codes are enabled, it seems there are only 14
// usable colors in the 4-bit color mode.
vdp1.vram.cmd[3].PMOD = PMOD__COLOR_MODE__LOOKUP_TABLE_16;
// It appears Kronos does not correctly calculate the color address in the
// VDP1 debugger. Kronos will report FFFC when the actual color table address
// in this example is 7FFE0.
vdp1.vram.cmd[3].COLR = COLR__LOOKUP_TABLE__ADDRESS(color_address); // non-palettized (rgb15) color data
vdp1.vram.cmd[3].SRCA = SRCA(character_address[1]);
vdp1.vram.cmd[3].SIZE = SIZE__X(sprite_stride) | SIZE__Y(sprite_height);
vdp1.vram.cmd[3].XA = foo[1].x;
vdp1.vram.cmd[3].YA = foo[1].y;
vdp1.vram.cmd[4].CTRL = CTRL__END;
// start drawing (execute the command list) on every frame
vdp1.reg.PTMR = PTMR__PTM__FRAME_CHANGE;
// free-running timer
sh2.reg.TCR = TCR__CKS__INTERNAL_DIV128;
sh2.reg.FTCSR = 0;
// initialize smpc
smpc.reg.DDR1 = 0; // INPUT
smpc.reg.DDR2 = 0; // INPUT
smpc.reg.IOSEL = 0; // SMPC control
smpc.reg.EXLE = 0; //
// interrupts
sh2_vec[SCU_VEC__SMPC] = (u32)(&smpc_int);
sh2_vec[SCU_VEC__V_BLANK_IN] = (u32)(&v_blank_in_int);
scu.reg.IST = 0;
scu.reg.IMS &= ~(IMS__SMPC);
}