saturn-examples/raytracing/raytracing.cpp

265 lines
6.6 KiB
C++

#include <stdint.h>
#include "vec3.hpp"
#include "fp.hpp"
#include "raytracing.hpp"
namespace viewport {
constexpr int width = 1;
constexpr int height = 1;
}
vec3 canvas_to_viewport(int cx, int cy)
{
return vec3(
fp16_16(((cx * viewport::width) * (1 << 16)) >> canvas::bit_width, fp_raw_tag{}),
fp16_16(((cy * viewport::height) * (1 << 16)) >> canvas::bit_height, fp_raw_tag{}),
fp16_16(1)
);
}
struct sphere {
vec3 center;
fp16_16 radius;
vec3 color;
fp16_16 specular;
fp16_16 reflective;
};
enum class light_type {
ambient,
point,
directional
};
struct light {
light_type type;
fp16_16 intensity;
union {
vec3 position;
vec3 direction;
};
};
struct scene {
sphere spheres[4];
light lights[3];
};
constexpr scene scene {
{ // spheres
{
{0, -1, 3}, // center
1, // radius
{1, 0, 0}, // color
8, // specular
fp16_16(65536 * 0.2, fp_raw_tag{}) // reflective
},
{
{2, 0, 4},
1,
{0, 0, 1},
10,
fp16_16(65536 * 0.3, fp_raw_tag{})
},
{
{-2, 0, 4},
fp16_16(1),
{0, 1, 0},
10,
fp16_16(65536 * 0.4, fp_raw_tag{})
},
{
{0, -31, 0},
fp16_16(30),
{1, 1, 0},
0,
fp16_16(65536 * 0.5, fp_raw_tag{})
}
},
{ // lights
{
light_type::ambient, // type
fp16_16(65536 * 0.2, fp_raw_tag{}), // intensity
{{0, 0, 0}} //
},
{
light_type::point, // type
fp16_16(65536 * 0.6, fp_raw_tag{}), // intensity
{{2, 1, 0}} // position
},
{
light_type::directional, // type
fp16_16(65536 * 0.6, fp_raw_tag{}), // intensity
{{1, 4, 4}} // direction
}
}
};
static_assert(scene.spheres[0].center.z.value == (3 << 16));
static_assert(scene.lights[0].intensity.value != 0);
static_assert(scene.lights[1].position.x.value == (2 << 16));
struct t1_t2 {
fp16_16 t1;
fp16_16 t2;
};
inline t1_t2 intersect_ray_sphere(const vec3& origin, const vec3& direction, const sphere& sphere)
{
fp16_16 r = sphere.radius;
vec3 CO = origin - sphere.center;
auto a = dot(direction, direction);
auto b = dot(CO, direction) * static_cast<int32_t>(2);
auto c = dot(CO, CO) - r*r;
auto discriminant = b*b - static_cast<int32_t>(4)*a*c;
if (discriminant < fp16_16(0)) {
return {fp_limits<fp16_16>::max(), fp_limits<fp16_16>::max()};
} else {
auto sqrt_d = sqrt(discriminant);
auto a2 = fp16_16(a*static_cast<int32_t>(2));
auto t1 = (-b + sqrt_d) / a2;
auto t2 = (-b - sqrt_d) / a2;
return {t1, t2};
}
}
struct t_sphere {
fp16_16 closest_t;
const sphere * closest_sphere;
};
inline t_sphere closest_intersection
(
const vec3& origin,
const vec3& direction,
const fp16_16 t_min,
const fp16_16 t_max
)
{
fp16_16 closest_t = fp_limits<fp16_16>::max();
const sphere * closest_sphere = nullptr;
for (int i = 0; i < 4; i++) {
auto& sphere = scene.spheres[i];
auto [t1, t2] = intersect_ray_sphere(origin, direction, sphere);
if (t1 >= t_min && t1 < t_max && t1 < closest_t) {
closest_t = t1;
closest_sphere = &sphere;
}
if (t2 >= t_min && t2 < t_max && t2 < closest_t) {
closest_t = t2;
closest_sphere = &sphere;
}
}
return {closest_t, closest_sphere};
}
fp16_16 compute_lighting(const vec3& point, const vec3& normal,
const vec3& viewer, fp16_16 specular)
{
fp16_16 intensity{0};
for (int i = 0; i < 3; i++) {
const light& light = scene.lights[i];
if (light.type == light_type::ambient) {
intensity += light.intensity;
} else {
vec3 light_vector;
fp16_16 t_max(0);
if (light.type == light_type::point) {
light_vector = light.position - point;
t_max = fp16_16(1);
} else {
light_vector = light.direction;
t_max = fp_limits<fp16_16>::max();
}
constexpr fp16_16 t_min = fp16_16(128, fp_raw_tag{});
auto [shadow_t, shadow_sphere] = closest_intersection(point, light_vector, t_min, t_max);
if (shadow_sphere != nullptr)
continue;
// diffuse
auto n_dot_l = dot(normal, light_vector);
if (n_dot_l > fp16_16(0)) {
intensity += light.intensity * n_dot_l * (fp16_16(1) / length(light_vector));
}
// specular
if (specular > fp16_16(0)) {
auto reflected = normal * fp16_16(2) * dot(normal, light_vector) - light_vector;
auto r_dot_v = dot(reflected, viewer);
if (r_dot_v > fp16_16(0)) {
auto base = r_dot_v / (length(reflected) * length(viewer));
intensity += light.intensity * pow(base, specular);
}
}
}
}
return intensity;
}
constexpr inline vec3 reflect_ray(const vec3& r, const vec3& n)
{
return n * fp16_16(2) * dot(n, r) - r;
}
static vec3 trace_ray
(
const vec3& origin,
const vec3& direction,
const fp16_16 t_min,
const fp16_16 t_max,
const int recursion_depth
)
{
auto [closest_t, closest_sphere] = closest_intersection(origin, direction, t_min, t_max);
if (closest_sphere == nullptr) {
return vec3(0, 0, 0);
} else {
vec3 point = origin + direction * closest_t;
vec3 normal = point - closest_sphere->center;
normal = normal * (fp16_16(1) / length(normal));
auto direction_neg = -direction;
auto intensity = compute_lighting(point, normal, direction_neg, closest_sphere->specular);
auto local_color = closest_sphere->color * intensity;
const auto& reflective = closest_sphere->reflective;
if (recursion_depth <= 0 || reflective <= fp16_16(0)) {
return local_color;
} else {
auto reflected_ray = reflect_ray(direction_neg, normal);
auto reflected_color = trace_ray(point, reflected_ray,
fp16_16(128, fp_raw_tag{}),
fp_limits<fp16_16>::max(),
recursion_depth - 1);
return local_color * (fp16_16(1) - reflective) + reflected_color * reflective;
}
}
}
void render(int half, void (&put_pixel) (int32_t x, int32_t y, const vec3& c))
{
vec3 origin = vec3(0, 0, 0);
int x_low = half ? 0 : -(320/2);
int x_high = half ? (320/2) : 0;
//for (int x = -(width/2); x < (width/2); x++) {
for (int x = x_low; x < x_high; x++) {
for (int y = -(canvas::height/2 + 1); y < (canvas::height/2 + 1); y++) {
vec3 direction = canvas_to_viewport(x, y);
vec3 color = trace_ray(origin, direction,
fp16_16(1),
fp_limits<fp16_16>::max(),
2);
put_pixel(x, y, color);
}
}
}