#include #include "vdp2.h" #include "smpc.h" #include "scsp.h" #include "scu.h" #include "sh2.h" #include "../common/copy.hpp" #include "../common/vdp2_func.hpp" #include "../common/string.hpp" extern void * _nec_bitmap_start __asm("_binary_res_nec_bitmap_bin_start"); extern void * _m68k_start __asm("_binary_m68k_midi_debug_bin_start"); extern void * _m68k_size __asm("_binary_m68k_midi_debug_bin_size"); constexpr inline uint16_t rgb15(int32_t r, int32_t g, int32_t b) { return ((b & 31) << 10) | ((g & 31) << 5) | ((r & 31) << 0); } void palette_data() { vdp2.cram.u16[1 + 0 ] = rgb15( 0, 0, 0); vdp2.cram.u16[2 + 0 ] = rgb15(31, 31, 31); vdp2.cram.u16[1 + 16] = rgb15(31, 31, 31); vdp2.cram.u16[2 + 16] = rgb15( 0, 0, 0); vdp2.cram.u16[1 + 32] = rgb15(10, 10, 10); vdp2.cram.u16[2 + 32] = rgb15(31, 31, 31); } namespace pix_fmt_4bpp { constexpr inline uint32_t bit(uint8_t n, int32_t i) { i &= 7; auto b = (n >> (7 - i)) & 1; return ((b + 1) << ((7 - i) * 4)); } constexpr inline uint32_t bits(uint8_t n) { return bit(n, 0) | bit(n, 1) | bit(n, 2) | bit(n, 3) | bit(n, 4) | bit(n, 5) | bit(n, 6) | bit(n, 7); } static_assert(bits(0b1100'1110) == 0x2211'2221); static_assert(bits(0b1010'0101) == 0x2121'1212); static_assert(bits(0b1000'0000) == 0x2111'1111); } void cell_data() { const uint8_t * normal = reinterpret_cast(&_nec_bitmap_start); for (int ix = 0; ix <= (0x7f - 0x20); ix++) { for (int y = 0; y < 8; y++) { const uint8_t row_n = normal[ix * 8 + y]; vdp2.vram.u32[ 0 + (ix * 8) + y] = pix_fmt_4bpp::bits(row_n); } } } constexpr int32_t plane_a = 2; constexpr inline int32_t plane_offset(int32_t n) { return n * 0x2000; } constexpr int32_t page_size = 64 * 64 * 2; // N0PNB__1WORD (16-bit) constexpr int32_t plane_size = page_size * 1; constexpr int32_t page_width = 64; static int plane_ix = 0; void init_vdp2() { v_blank_in(); // DISP: Please make sure to change this bit from 0 to 1 during V blank. vdp2.reg.TVMD = ( TVMD__DISP | TVMD__LSMD__NON_INTERLACE | TVMD__VRESO__240 | TVMD__HRESO__NORMAL_320); /* set the color mode to 5bits per channel, 1024 colors */ vdp2.reg.RAMCTL = RAMCTL__CRMD__RGB_5BIT_1024; /* enable display of NBG0 */ vdp2.reg.BGON = BGON__N0ON; /* set character format for NBG0 to palettized 16 color set enable "cell format" for NBG0 set character size for NBG0 to 1x1 cell */ vdp2.reg.CHCTLA = CHCTLA__N0CHCN__16_COLOR | CHCTLA__N0BMEN__CELL_FORMAT | CHCTLA__N0CHSZ__1x1_CELL; /* "Note: In color RAM modes 0 and 2, 2048-color becomes 1024-color" */ /* use 1-word (16-bit) pattern names */ vdp2.reg.PNCN0 = PNCN0__N0PNB__1WORD; /* plane size */ vdp2.reg.PLSZ = PLSZ__N0PLSZ__1x1; /* map plane offset 1-word: value of bit 6-0 * 0x2000 2-word: value of bit 5-0 * 0x4000 */ vdp2.reg.MPOFN = MPOFN__N0MP(0); // bits 8~6 vdp2.reg.MPABN0 = MPABN0__N0MPB(plane_a) | MPABN0__N0MPA(plane_a); // bits 5~0 vdp2.reg.MPCDN0 = MPCDN0__N0MPD(plane_a) | MPCDN0__N0MPC(plane_a); // bits 5~0 // zeroize character/cell data from 0 up to plane_a_offset fill(&vdp2.vram.u32[(0 / 4)], 0, plane_offset(plane_a)); // zeroize plane_a; `0` is the ascii 0x20 ("space") which doubles as // "transparency" character. fill(&vdp2.vram.u32[(plane_offset(plane_a) / 4)], 0, plane_size * 2); } void set_char(int32_t x, int32_t y, uint8_t palette, uint8_t c) { const auto ix = (plane_offset(plane_a + plane_ix) / 2) + (y * page_width) + x; vdp2.vram.u16[ix] = PATTERN_NAME_TABLE_1WORD__PALETTE(palette) | PATTERN_NAME_TABLE_1WORD__CHARACTER((c - 0x20)); } static uint16_t * debug_buf = &scsp.ram.u16[0x080000 / 4]; static uint16_t * debug_length = &scsp.ram.u16[(0x080000 / 4) - 2]; void render() { static uint8_t lbuf[4]; string::hex(lbuf, 4, *debug_length); for (uint32_t i = 0; i < 4; i++) set_char(i, 0, 0, lbuf[i]); for (uint32_t i = 0; i < *debug_length; i++) { uint8_t buf[2]; string::hex(buf, 2, debug_buf[i]); int32_t x = 1 + (i % 8); int32_t y = 1 + (i / 8); set_char(x * 3 + 0, y, 0, buf[0]); set_char(x * 3 + 1, y, 0, buf[1]); } } extern "C" void v_blank_in_int(void) __attribute__ ((interrupt_handler)); void v_blank_in_int() { scu.reg.IST &= ~(IST__V_BLANK_IN); scu.reg.IMS = ~(IMS__V_BLANK_IN); render(); } void main() { /* SEGA SATURN TECHNICAL BULLETIN # 51 The document suggests that Sound RAM is (somewhat) preserved during SNDOFF. */ while ((smpc.reg.SF & 1) != 0); smpc.reg.SF = 1; smpc.reg.COMREG = COMREG__SNDOFF; while (smpc.reg.OREG[31].val != OREG31__SNDOFF); scsp.reg.ctrl.MIXER = MIXER__MEM4MB; /* The Saturn BIOS does not (un)initialize the DSP. Without zeroizing the DSP program, the SCSP DSP appears to have a program that continuously writes to 0x30000 through 0x3ffff in sound RAM, which has the effect of destroying any samples stored there. */ reg32 * dsp_steps = reinterpret_cast(&(scsp.reg.dsp.STEP[0].MPRO[0])); fill(dsp_steps, 0, (sizeof (scsp.reg.dsp.STEP))); uint32_t * m68k_main_start = reinterpret_cast(&_m68k_start); uint32_t m68k_main_size = reinterpret_cast(&_m68k_size); copy(&scsp.ram.u32[0], m68k_main_start, m68k_main_size); while ((smpc.reg.SF & 1) != 0); smpc.reg.SF = 1; smpc.reg.COMREG = COMREG__SNDON; while (smpc.reg.OREG[31].val != OREG31__SNDON); // do nothing while the sound CPU manipulates the SCSP init_vdp2(); palette_data(); cell_data(); sh2_vec[SCU_VEC__V_BLANK_IN] = (u32)(&v_blank_in_int); scu.reg.IST = 0; scu.reg.IMS = ~(IMS__V_BLANK_IN); }