#include #include "vdp1.h" #include "vdp2.h" #include "smpc.h" #include "sh2.h" #include "scu.h" struct color { uint8_t r; uint8_t g; uint8_t b; }; const static color colors[16] = { {255, 255, 255}, // (SPD / transparent) 0 {0, 255, 255}, // I (cyan) 1 {255, 255, 0}, // O (yellow) 2 {128, 0, 128}, // T (purple) 3 {0, 255, 0}, // S (green) 4 {0, 0, 255}, // J (blue) 5 {255, 0, 0}, // Z (red) 6 {255, 128, 0}, // L (orange) 7 {0}, // 8 {0}, // 9 {0}, // 10 (a) {0}, // 11 (b) {0}, // 12 (c) {0}, // 13 (d) {0}, // 14 (e) {250, 128, 114} // (ECD) f }; inline constexpr uint16_t rgb15(const color& color) { return ((color.b >> 3) << 10) // blue | ((color.g >> 3) << 5 ) // green | ((color.r >> 3) << 0 ); // red } uint32_t color_lookup_table(const uint32_t top) { // "The size of a color lookup table is 20H (32) bytes" // (assume top is already aligned to 0x20) const uint32_t table_address = top - 0x20; // "The color lookup table defines the respective color codes of 16 colors in // VRAM as 16-bit data" uint16_t * table = &vdp1.vram.u16[(table_address / 2)]; uint32_t buf_ix = 0; for (uint32_t i = 0; i < 16; i++) { // there is a typo in "5.2 Color Lookup Tables" "If RGB code, MSB = 0" // should be "MSB = 1". The "MSB = 0" claim is correctly contradicted later. table[i] = 1 << 15 | rgb15(colors[i]); // _mai_data_pal is rgb24, 3 bytes per color buf_ix += 3; } return table_address; } template inline constexpr T round(const T n) { return (n + 0x20 - 1) & (-0x20); } constexpr uint32_t sprite_stride = 16; constexpr uint32_t sprite_height = 10; constexpr uint32_t sprite_width = 10; uint32_t character_pattern_table(const uint32_t top, int color) { constexpr uint32_t canvas_size = sprite_stride * 10; // 1 pixel = 4 bits constexpr uint32_t table_size = round(canvas_size / 2); const uint32_t table_address = top - table_size; uint32_t * table = &vdp1.vram.u32[(table_address / 4)]; // `table_size` is in bytes; divide by two to get uint16_t indicies. uint32_t table_ix = 0; for (uint32_t row = 0; row < sprite_height; row++) { table[table_ix++] = (color << 28) | (color << 24) | (color << 20) | (color << 16) | (color << 12) | (color << 8 ) | (color << 4 ) | (color << 0 ); // 0xf is the "end code" for 4-bit row/pixel data; there must be two // bit-consecutive codes for vdp2 to interpret it as an end code. constexpr int ecd = 0xf; table[table_ix++] = (color << 28) | (color << 24) | (ecd << 20) | (ecd << 16); } return table_address; } struct controller_state { uint8_t up; uint8_t down; uint8_t left; uint8_t right; }; #define assert(n) if ((n) == 0) while (1); enum intback_fsm { PORT_STATUS = 0, PERIPHERAL_ID, DATA1, DATA2, FSM_NEXT, }; struct intback_state { int fsm; int controller_ix; int port_ix; controller_state controller[2]; }; static intback_state intback; static int oreg_ix; struct xy { int x; int y; }; static xy foo[2] = { {100, 100}, {200, 100} }; void smpc_int(void) __attribute__ ((interrupt_handler)); void smpc_int(void) { scu.reg.IST &= ~(IST__SMPC); scu.reg.IMS = ~(IMS__SMPC | IMS__V_BLANK_IN); if ((smpc.reg.SR & SR__PDL) != 0) { // PDL == 1; 1st peripheral data oreg_ix = 0; intback.controller_ix = 0; intback.port_ix = 0; intback.fsm = PORT_STATUS; } int port_connected = 0; /* This intback handling is oversimplified: - up to 2 controllers may be connected - controller port 1 must be connected (could relax this) - both controllers must be "digital pad" controllers */ while (oreg_ix < 31) { reg8 const& oreg = smpc.reg.oreg[oreg_ix++]; switch (intback.fsm++) { case PORT_STATUS: port_connected = (PORT_STATUS__CONNECTORS(oreg) == 1); if (port_connected) { assert(PORT_STATUS__MULTITAP_ID(oreg) == 0xf); } else { intback.fsm = FSM_NEXT; } break; case PERIPHERAL_ID: assert(port_connected); assert(PERIPHERAL_ID__IS_DIGITAL_PAD(oreg)); assert(PERIPHERAL_ID__DATA_SIZE(oreg) == 2); break; case DATA1: assert(port_connected); { controller_state& c = intback.controller[intback.controller_ix]; c.right = (DIGITAL__1__RIGHT & oreg) == 0; c.left = (DIGITAL__1__LEFT & oreg) == 0; c.down = (DIGITAL__1__DOWN & oreg) == 0; c.up = (DIGITAL__1__UP & oreg) == 0; } break; case DATA2: assert(port_connected); // ignore data2 break; } if (intback.fsm == FSM_NEXT) { if (intback.port_ix == 1) break; else { intback.port_ix++; intback.controller_ix++; intback.fsm = PORT_STATUS; } } } if ((smpc.reg.SR & SR__NPE) != 0) { smpc.reg.ireg[0] = INTBACK__IREG0__CONTINUE; } else { smpc.reg.ireg[0] = INTBACK__IREG0__BREAK; } } void v_blank_in_int(void) __attribute__ ((interrupt_handler)); void v_blank_in_int() { scu.reg.IST &= ~(IST__V_BLANK_IN); scu.reg.IMS = ~(IMS__SMPC | IMS__V_BLANK_IN); sh2.reg.FRC.H = 0; sh2.reg.FRC.L = 0; sh2.reg.FTCSR = 0; // clear flags for (int i = 0; i < 2; i++) { const controller_state& c = intback.controller[i]; if (c.left) vdp1.vram.cmd[2 + i].XA = --foo[i].x; if (c.right) vdp1.vram.cmd[2 + i].XA = ++foo[i].x; if (c.up) vdp1.vram.cmd[2 + i].YA = --foo[i].y; if (c.down) vdp1.vram.cmd[2 + i].YA = ++foo[i].y; } // wait 300us, as specified in the SMPC manual. // It appears reading FRC.H is mandatory and *must* occur before FRC.L on real // hardware. while ((sh2.reg.FTCSR & FTCSR__OVF) == 0 && sh2.reg.FRC.H == 0 && sh2.reg.FRC.L < 63); if ((vdp2.reg.TVSTAT & TVSTAT__VBLANK) != 0) { // on real hardware, SF contains uninitialized garbage bits other than the // lsb. while ((smpc.reg.SF & 1) != 0); smpc.reg.SF = 0; smpc.reg.ireg[0] = INTBACK__IREG0__STATUS_DISABLE; smpc.reg.ireg[1] = ( INTBACK__IREG1__PERIPHERAL_DATA_ENABLE | INTBACK__IREG1__PORT2_15BYTE | INTBACK__IREG1__PORT1_15BYTE ); smpc.reg.ireg[2] = INTBACK__IREG2__MAGIC; smpc.reg.COMREG = COMREG__INTBACK; } } static inline void v_blank_in() { /* v _____ ____| |____ */ while ((vdp2.reg.TVSTAT & TVSTAT__VBLANK) != 0); while ((vdp2.reg.TVSTAT & TVSTAT__VBLANK) == 0); } void main() { uint32_t color_address, character_address[16]; uint32_t top = (sizeof (union vdp1_vram)); top = color_address = color_lookup_table(top); top = character_address[0] = character_pattern_table(top, 1); top = character_address[1] = character_pattern_table(top, 2); // wait for the beginning of a V blank v_blank_in(); // DISP: Please make sure to change this bit from 0 to 1 during V blank. vdp2.reg.TVMD = ( TVMD__DISP | TVMD__LSMD__NON_INTERLACE | TVMD__VRESO__240 | TVMD__HRESO__NORMAL_320); // disable all VDP2 backgrounds (e.g: the Sega bios logo) vdp2.reg.BGON = 0; // zeroize BACK color vdp2.reg.BKTAU = 0; vdp2.reg.BKTAL = 0; vdp2.vram.u16[0] = 0; // VDP2 User's Manual: // "When sprite data is in an RGB format, sprite register 0 is selected" // "When the value of a priority number is 0h, it is read as transparent" // // From a VDP2 perspective: in VDP1 16-color lookup table mode, VDP1 is still // sending RGB data to VDP2. This sprite color data as configured in // `color_lookup_table` from a VDP2 priority perspective uses sprite register 0. // // The power-on value of PRISA is zero. Set the priority for sprite register 0 // to some number greater than zero, so that the color data is not interpreted // as "transparent". vdp2.reg.PRISA = PRISA__S0PRIN(1); // Sprite register 0 PRIority Number /* TVM settings must be performed from the second H-blank IN interrupt after the V-blank IN interrupt to the H-blank IN interrupt immediately after the V-blank OUT interrupt. */ // "normal" display resolution, 16 bits per pixel, 512x256 framebuffer vdp1.reg.TVMR = TVMR__TVM__NORMAL; // swap framebuffers every 1 cycle; non-interlace vdp1.reg.FBCR = 0; // during a framebuffer erase cycle, write the color "black" to each pixel constexpr uint16_t black = 0x0000; vdp1.reg.EWDR = black; // the EWLR/EWRR macros use somewhat nontrivial math for the X coordinates // erase upper-left coordinate vdp1.reg.EWLR = EWLR__16BPP_X1(0) | EWLR__Y1(0); // erase lower-right coordinate vdp1.reg.EWRR = EWRR__16BPP_X3(319) | EWRR__Y3(239); vdp1.vram.cmd[0].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__SYSTEM_CLIP_COORDINATES; vdp1.vram.cmd[0].LINK = 0; vdp1.vram.cmd[0].XC = 319; vdp1.vram.cmd[0].YC = 239; vdp1.vram.cmd[1].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__LOCAL_COORDINATE; vdp1.vram.cmd[1].LINK = 0; vdp1.vram.cmd[1].XA = 0; vdp1.vram.cmd[1].YA = 0; vdp1.vram.cmd[2].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__NORMAL_SPRITE; vdp1.vram.cmd[2].LINK = 0; // The "end code" is 0xf, which is being used in the mai sprite palette. If // both transparency and end codes are enabled, it seems there are only 14 // usable colors in the 4-bit color mode. vdp1.vram.cmd[2].PMOD = PMOD__COLOR_MODE__LOOKUP_TABLE_16; // It appears Kronos does not correctly calculate the color address in the // VDP1 debugger. Kronos will report FFFC when the actual color table address // in this example is 7FFE0. vdp1.vram.cmd[2].COLR = COLR__ADDRESS(color_address); // non-palettized (rgb15) color data vdp1.vram.cmd[2].SRCA = SRCA(character_address[0]); vdp1.vram.cmd[2].SIZE = SIZE__X(sprite_stride) | SIZE__Y(sprite_height); vdp1.vram.cmd[2].XA = foo[0].x; vdp1.vram.cmd[2].YA = foo[0].y; vdp1.vram.cmd[3].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__NORMAL_SPRITE; vdp1.vram.cmd[3].LINK = 0; // The "end code" is 0xf, which is being used in the mai sprite palette. If // both transparency and end codes are enabled, it seems there are only 14 // usable colors in the 4-bit color mode. vdp1.vram.cmd[3].PMOD = PMOD__COLOR_MODE__LOOKUP_TABLE_16; // It appears Kronos does not correctly calculate the color address in the // VDP1 debugger. Kronos will report FFFC when the actual color table address // in this example is 7FFE0. vdp1.vram.cmd[3].COLR = COLR__ADDRESS(color_address); // non-palettized (rgb15) color data vdp1.vram.cmd[3].SRCA = SRCA(character_address[1]); vdp1.vram.cmd[3].SIZE = SIZE__X(sprite_stride) | SIZE__Y(sprite_height); vdp1.vram.cmd[3].XA = foo[1].x; vdp1.vram.cmd[3].YA = foo[1].y; vdp1.vram.cmd[4].CTRL = CTRL__END; // start drawing (execute the command list) on every frame vdp1.reg.PTMR = PTMR__PTM__FRAME_CHANGE; // free-running timer sh2.reg.TCR = TCR__CKS__INTERNAL_DIV128; sh2.reg.FTCSR = 0; // initialize smpc smpc.reg.DDR1 = 0; // INPUT smpc.reg.DDR2 = 0; // INPUT smpc.reg.IOSEL = 0; // SMPC control smpc.reg.EXLE = 0; // // interrupts sh2_vec[SCU_VEC__SMPC] = (u32)(&smpc_int); sh2_vec[SCU_VEC__V_BLANK_IN] = (u32)(&v_blank_in_int); scu.reg.IST = 0; scu.reg.IMS = ~(IMS__SMPC | IMS__V_BLANK_IN); } extern "C" void start(void) { main(); while (1); }