#include #include "vdp2.h" #include "vdp1.h" extern void * _ipafont_data_start __asm("_binary_res_ipapgothic_font_bin_start"); constexpr inline uint16_t rgb15_gray(uint32_t intensity) { return ((intensity & 31) << 10) // blue | ((intensity & 31) << 5 ) // green | ((intensity & 31) << 0 ); // red } void vdp2_color_palette(uint32_t colors, uint32_t color_bank) { /* generate a palette of 32 grays */ uint16_t * table = &vdp2.cram.u16[colors * color_bank]; for (uint32_t i = 0; i <= 31; i++) { table[i] = rgb15_gray(i); } } /* uint32_t character_pattern_table(const uint32_t top) { // Unlike vdp2 cell format, vdp1 sprites appear to be much more dimensionally // flexible. The data is interpreted as a row-major packed array, where the // row/horizontal stride is equal to the sprite width (as configured in the // draw command). This is identical to how the input palette index data is // structured, so there is no transformation to do here, only a plain memory // copy. // Multiply `buf_size` by one because this converts (indexed color) 8 bit pixels // to 8 bit pixels. Round up to the nearest 0x20 (for an 8000 pixel/8000 byte // image, this rounding is a no-op). const uint32_t table_size = ((buf_size * 1) + 0x20 - 1) & (-0x20); const uint32_t table_address = top - table_size; uint16_t * table = &vdp1.vram.u16[(table_address / 2)]; // `table_size` is in bytes; divide by two to get uint16_t indicies. uint32_t buf_ix = 0; for (uint32_t table_ix = 0; table_ix < (table_size / 2); table_ix++) { uint32_t tmp = buf[buf_ix]; table[table_ix] = (((tmp >> 8) & 0xff) << 8) | (((tmp >> 0) & 0xff) << 0); buf_ix += 1; } return table_address; } */ // metrics are 26.6 fixed point struct glyph_metrics { int32_t width; int32_t height; int32_t horiBearingX; int32_t horiBearingY; int32_t horiAdvance; } __attribute__ ((packed)); static_assert((sizeof (glyph_metrics)) == ((sizeof (int32_t)) * 5)); struct glyph_bitmap { uint32_t offset; uint32_t rows; uint32_t width; uint32_t pitch; } __attribute__ ((packed)); static_assert((sizeof (glyph_bitmap)) == ((sizeof (uint32_t)) * 4)); struct glyph { glyph_bitmap bitmap; glyph_metrics metrics; } __attribute__ ((packed)); static_assert((sizeof (glyph)) == ((sizeof (glyph_bitmap)) + (sizeof (glyph_metrics)))); struct font { uint32_t glyph_index; uint32_t bitmap_offset; int32_t height; int32_t max_advance; } __attribute__ ((packed)); static_assert((sizeof (font)) == ((sizeof (uint32_t)) * 4)); template void copy(T * dst, const T * src, int32_t n) noexcept { while (n > 0) { *dst++ = *src++; n -= (sizeof (T)); } } uint32_t pixel_data(const uint32_t top, const uint8_t * glyph_bitmaps, const uint32_t bitmap_offset) { const uint32_t * buf = reinterpret_cast(&glyph_bitmaps[0]); const uint32_t table_size = (bitmap_offset + 0x20 - 1) & (-0x20); const uint32_t table_address = top - table_size; uint32_t * table = &vdp1.vram.u32[(table_address / 4)]; copy(table, buf, bitmap_offset); return table_address; } uint32_t draw_utf16_string(const uint32_t color_address, const uint32_t character_address, const glyph * glyphs, uint32_t cmd_ix, const char16_t * string, const uint32_t length) { int32_t x = 8 << 6; int32_t y = 100 << 6; for (uint32_t i = 0; i < length; i++) { const char16_t c = string[i]; const uint16_t c_offset = c - 0x3000; const glyph_bitmap& bitmap = glyphs[c_offset].bitmap; const glyph_metrics& metrics = glyphs[c_offset].metrics; vdp1.vram.cmd[cmd_ix].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__NORMAL_SPRITE; vdp1.vram.cmd[cmd_ix].LINK = 0; vdp1.vram.cmd[cmd_ix].PMOD = PMOD__ECD | PMOD__COLOR_MODE__COLOR_BANK_256; vdp1.vram.cmd[cmd_ix].COLR = color_address; // non-palettized (rgb15) color data vdp1.vram.cmd[cmd_ix].SRCA = SRCA(character_address + bitmap.offset); vdp1.vram.cmd[cmd_ix].SIZE = SIZE__X(bitmap.pitch) | SIZE__Y(bitmap.rows); vdp1.vram.cmd[cmd_ix].XA = (x + metrics.horiBearingX) >> 6; vdp1.vram.cmd[cmd_ix].YA = (y - metrics.horiBearingY) >> 6; x += metrics.horiAdvance; cmd_ix++; } return cmd_ix; } static const char16_t _string[] = u"「ブルースパン」"; void main() { uint32_t color_address, character_address; uint32_t top = (sizeof (union vdp1_vram)); constexpr uint32_t colors = 256; constexpr uint32_t color_bank = 0; // completely random and arbitrary value uint8_t * data = reinterpret_cast(&_ipafont_data_start); const font * font = reinterpret_cast(&data[0]); const glyph * glyphs = reinterpret_cast(&data[(sizeof (struct font))]); // there are three 32-bit fields before the start of `glyphs` const uint8_t * glyph_bitmaps = &data[(sizeof (struct font)) + ((sizeof (struct glyph)) * font->glyph_index)]; top = character_address = pixel_data(top, glyph_bitmaps, font->bitmap_offset); vdp2_color_palette(colors, color_bank); // For color bank color, COLR is concatenated bitwise with pixel data. See // Figure 6.17 in the VDP1 manual. color_address = color_bank << 8; // DISP: Please make sure to change this bit from 0 to 1 during V blank. vdp2.reg.TVMD = ( TVMD__DISP | TVMD__LSMD__NON_INTERLACE | TVMD__VRESO__240 | TVMD__HRESO__NORMAL_320); // disable all VDP2 backgrounds (e.g: the Sega bios logo) vdp2.reg.BGON = 0; // VDP2 User's Manual: // "When sprite data is in an RGB format, sprite register 0 is selected" // "When the value of a priority number is 0h, it is read as transparent" // // From a VDP2 perspective: in VDP1 16-color lookup table mode, VDP1 is still // sending RGB data to VDP2. This sprite color data as configured in // `color_lookup_table` from a VDP2 priority perspective uses sprite register 0. // // The power-on value of PRISA is zero. Set the priority for sprite register 0 // to some number greater than zero, so that the color data is not interpreted // as "transparent". vdp2.reg.PRISA = PRISA__S0PRIN(1); // Sprite register 0 PRIority Number /* TVM settings must be performed from the second H-blank IN interrupt after the V-blank IN interrupt to the H-blank IN interrupt immediately after the V-blank OUT interrupt. */ // "normal" display resolution, 16 bits per pixel, 512x256 framebuffer vdp1.reg.TVMR = TVMR__TVM__NORMAL; // swap framebuffers every 1 cycle; non-interlace vdp1.reg.FBCR = 0; // during a framebuffer erase cycle, write the color "black" to each pixel constexpr uint16_t black = 0x0000; vdp1.reg.EWDR = black; // the EWLR/EWRR macros use somewhat nontrivial math for the X coordinates // erase upper-left coordinate vdp1.reg.EWLR = EWLR__16BPP_X1(0) | EWLR__Y1(0); // erase lower-right coordinate vdp1.reg.EWRR = EWRR__16BPP_X3(319) | EWRR__Y3(239); vdp1.vram.cmd[0].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__SYSTEM_CLIP_COORDINATES; vdp1.vram.cmd[0].LINK = 0; vdp1.vram.cmd[0].XC = 319; vdp1.vram.cmd[0].YC = 239; vdp1.vram.cmd[1].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__LOCAL_COORDINATE; vdp1.vram.cmd[1].LINK = 0; vdp1.vram.cmd[1].XA = 0; vdp1.vram.cmd[1].YA = 0; uint32_t cmd_ix = 2; cmd_ix = draw_utf16_string(color_address, character_address, glyphs, cmd_ix, _string, ((sizeof (_string)) / (sizeof (_string[0]))) - 1); vdp1.vram.cmd[cmd_ix].CTRL = CTRL__END; cmd_ix++; // start drawing (execute the command list) on every frame vdp1.reg.PTMR = PTMR__PTM__FRAME_CHANGE; } extern "C" void start(void) { main(); while (1) {} }