#include #include "vdp2.h" #include "vdp1.h" #include "../common/vdp2_func.hpp" #include "../common/copy.hpp" extern void * _mai_data_pal_start __asm("_binary_res_mai_data_pal_start"); extern void * _mai_data_pal_size __asm("_binary_res_mai_data_pal_size"); extern void * _mai00_data_start __asm("_binary_res_mai00_data_start"); extern void * _mai00_data_size __asm("_binary_res_mai00_data_size"); extern void * _haohmaru_data_pal_start __asm("_binary_res_haohmaru_data_pal_start"); extern void * _haohmaru_data_pal_size __asm("_binary_res_haohmaru_data_pal_size"); extern void * _haohmaru_data_start __asm("_binary_res_haohmaru_data_start"); extern void * _haohmaru_data_size __asm("_binary_res_haohmaru_data_size"); extern void * _forest_pattern_start __asm("_binary_res_forest_pattern_start"); extern void * _forest_pattern_size __asm("_binary_res_forest_pattern_size"); extern void * _forest_tile_start __asm("_binary_res_forest_tile_start"); extern void * _forest_tile_size __asm("_binary_res_forest_tile_size"); extern void * _forest_data_pal_start __asm("_binary_res_forest_data_pal_start"); extern void * _forest_data_pal_size __asm("_binary_res_forest_data_pal_size"); inline constexpr uint16_t rgb15(const uint8_t * rgb24) { return ((rgb24[2] >> 3) << 10) // blue | ((rgb24[1] >> 3) << 5) // green | ((rgb24[0] >> 3) << 0); // red } void vdp2_color_palette(const uint32_t color_index_offset, const uint8_t * buf, const uint32_t buf_size) { uint16_t * table = &vdp2.cram.u16[color_index_offset]; uint32_t buf_ix = 0; for (uint32_t i = 0; i < (buf_size / 3); i++) { table[i] = rgb15(&buf[buf_ix]); buf_ix += 3; } } void vdp2_color_palette() { { /* mai palette */ const uint32_t buf_size = reinterpret_cast(&_mai_data_pal_size); const uint8_t * buf = reinterpret_cast(&_mai_data_pal_start); vdp2_color_palette(0, buf, buf_size); } { /* forest palette */ const uint32_t buf_size = reinterpret_cast(&_forest_data_pal_size); const uint8_t * buf = reinterpret_cast(&_forest_data_pal_start); vdp2_color_palette(16, buf, buf_size); } { /* haohmaru palette */ const uint32_t buf_size = reinterpret_cast(&_haohmaru_data_pal_size); const uint8_t * buf = reinterpret_cast(&_haohmaru_data_pal_start); vdp2_color_palette(32, buf, buf_size); } } uint32_t character_pattern_table(const uint32_t top, const uint32_t * buf, const uint32_t buf_size) { // Unlike vdp2 cell format, vdp1 sprites appear to be much more dimensionally // flexible. The data is interpreted as a row-major packed array, where the // row/horizontal stride is equal to the sprite width (as configured in the // draw command). This is identical to how the input palette index data is // structured, so there is no transformation to do here, only a plain memory // copy. // Divide `buf_size` by two because this converts (indexed color) 8 bit pixels // to 4 bit pixels. Round up to the nearest 0x20 (for an 8000 pixel/8000 byte // image, this rounding is a no-op). const uint32_t table_size = ((buf_size / 2) + 0x20 - 1) & (-0x20); const uint32_t table_address = top - table_size; uint16_t * table = &vdp1.vram.u16[(table_address / 2)]; // `table_size` is in bytes; divide by two to get uint16_t indicies. uint32_t buf_ix = 0; for (uint32_t table_ix = 0; table_ix < (table_size / 2); table_ix++) { uint32_t tmp = buf[buf_ix]; table[table_ix] = (((tmp >> 24) & 0xf) << 12) | (((tmp >> 16) & 0xf) << 8 ) | (((tmp >> 8 ) & 0xf) << 4 ) | (((tmp >> 0 ) & 0xf) << 0 ); buf_ix += 1; } return table_address; } uint32_t forest_cell_data(uint32_t top) { const uint32_t buf_size = reinterpret_cast(&_forest_tile_size); const uint32_t * buf = reinterpret_cast(&_forest_tile_start); // round to nearest multiple of 32 const uint32_t table_size = ((buf_size) + 0x20 - 1) & (-0x20); const uint32_t base_address = top - table_size; // in bytes copy(&vdp2.vram.u32[base_address / 4], buf, buf_size); return base_address; } void forest_init() { /* enable display of NBG0 */ vdp2.reg.BGON = BGON__N0ON | BGON__N0TPON; /* set character format for NBG0 to palettized 16 color set enable "cell format" for NBG0 set character size for NBG0 to 1x1 cell */ vdp2.reg.CHCTLA = CHCTLA__N0CHCN__16_COLOR | CHCTLA__N0BMEN__CELL_FORMAT | CHCTLA__N0CHSZ__1x1_CELL; /* plane size */ vdp2.reg.PLSZ = PLSZ__N0PLSZ__1x1; /* map plane offset 1-word: value of bit 6-0 * 0x2000 2-word: value of bit 5-0 * 0x4000 */ constexpr int plane_a = 0; constexpr int plane_a_offset = plane_a * 0x4000; vdp2.reg.MPOFN = MPOFN__N0MP(0); // bits 8~6 vdp2.reg.MPABN0 = MPABN0__N0MPB(plane_a) | MPABN0__N0MPA(plane_a); // bits 5~0 vdp2.reg.MPCDN0 = MPCDN0__N0MPD(plane_a) | MPCDN0__N0MPC(plane_a); // bits 5~0 uint32_t top = (sizeof (union vdp2_vram)); uint32_t cell_top = top = forest_cell_data(0x080000); uint32_t pattern_name = cell_top / 32; /* use 2-word (32-bit) pattern names */ vdp2.reg.PNCN0 = PNCN0__N0PNB__2WORD; const uint32_t buf_size = reinterpret_cast(&_forest_pattern_size); const uint16_t * buf = reinterpret_cast(&_forest_pattern_start); uint32_t * pattern = &vdp2.vram.u32[(plane_a_offset / 4)]; uint32_t x = 0; uint32_t y = 0; for (uint32_t i = 0; i < (buf_size / 2); i++) { pattern[y * 64 + x] = 1 << 16 | (buf[i] + (cell_top / 32)); x++; if (x >= 40) { x = 0; y++; } } } void main() { // Sega Saturn has 4 Mbit VRAM vdp2.reg.VRSIZE = 0; // Disable VRAM bank partitioning during CPU access vdp2.reg.RAMCTL = 0; // Enable CPU access to VDP2 VRAM at all cycles vdp2.reg.CYCA0 = 0xeeee'eeee; vdp2.reg.CYCA1 = 0xeeee'eeee; // A1 is irrelevant because bank partitioning is not enabled yet vdp2.reg.CYCB0 = 0xeeee'eeee; vdp2.reg.CYCB1 = 0xeeee'eeee; // B1 is irrelevant because bank partitioning is not enabled yet // initialize VDP2 VRAM vdp2_color_palette(); forest_init(); // NBG0 Pattern Name Data read at T0 from bank A0 (0x000000 - 0x01ffff) // NBG0 Character Pattern Data read at T0 from bank B1 (0x060000 - 0x07ffff) // all other VDP2 VRAM accesses disabled // // This is because: // - N0MPA / N0MPB / N0MPC / N0MPD are at addresses 0x000000 through 0x002000 (bank A0) // - forest_cell_data ("Character Pattern Data" for NBG0) is at addresses 0x076a00 through 0x07ffff (bank B1) vdp2.reg.CYCA0 = 0x0fff'ffff; vdp2.reg.CYCA1 = 0xffff'ffff; vdp2.reg.CYCB0 = 0xffff'ffff; vdp2.reg.CYCB1 = 0x4fff'ffff; // Enable VRAM bank partitioning vdp2.reg.RAMCTL = RAMCTL__VRAMD | RAMCTL__VRBMD; uint32_t mai_character_address; uint32_t haohmaru_character_address; uint32_t top = (sizeof (union vdp1_vram)); { /* mai */ const uint32_t buf_size = reinterpret_cast(&_mai00_data_size); const uint32_t * buf = reinterpret_cast(&_mai00_data_start); top = mai_character_address = character_pattern_table(top, buf, buf_size); } { /* haohmaru */ const uint32_t buf_size = reinterpret_cast(&_haohmaru_data_size); const uint32_t * buf = reinterpret_cast(&_haohmaru_data_start); top = haohmaru_character_address = character_pattern_table(top, buf, buf_size); } // DISP: Please make sure to change this bit from 0 to 1 during V blank. vdp2.reg.TVMD = ( TVMD__DISP | TVMD__LSMD__NON_INTERLACE | TVMD__VRESO__240 | TVMD__HRESO__NORMAL_320); // SPCTL__SPCCCS__EQUAL: only perform color calculation on Sprite (pixels) // that have a priority number exactly equal ot SPCCN // // Sprite Data is Type 0 vdp2.reg.SPCTL = SPCTL__SPCCCS__EQUAL | SPCTL__SPCCN(1) | SPCTL__SPTYPE(0); // Enable Sprite Color Calculation vdp2.reg.CCCTL = CCCTL__SPCCEN; // VDP2 User's Manual: // "When sprite data is in an RGB format, sprite register 0 is selected" // "When the value of a priority number is 0h, it is read as transparent" // // From a VDP2 perspective: in VDP1 16-color lookup table mode, VDP1 is still // sending RGB data to VDP2. This sprite color data as configured in // `color_lookup_table` from a VDP2 priority perspective uses sprite register 0. // // The power-on value of PRISA is zero. Set the priority for sprite register 0 // to some number greater than zero, so that the color data is not interpreted // as "transparent". vdp2.reg.PRISA = PRISA__S0PRIN(2) // Sprite register 0 PRIority Number | PRISA__S1PRIN(1); vdp2.reg.PRINA = PRINA__N0PRIN(1); /* TVM settings must be performed from the second H-blank IN interrupt after the V-blank IN interrupt to the H-blank IN interrupt immediately after the V-blank OUT interrupt. */ // "normal" display resolution, 16 bits per pixel, 512x256 framebuffer vdp1.reg.TVMR = TVMR__TVM__NORMAL; // swap framebuffers every 1 cycle; non-interlace vdp1.reg.FBCR = 0; // during a framebuffer erase cycle, write the color "transparent" to each pixel constexpr uint16_t black = 0x0000; vdp1.reg.EWDR = black; // the EWLR/EWRR macros use somewhat nontrivial math for the X coordinates // erase upper-left coordinate vdp1.reg.EWLR = EWLR__16BPP_X1(0) | EWLR__Y1(0); // erase lower-right coordinate vdp1.reg.EWRR = EWRR__16BPP_X3(319) | EWRR__Y3(239); vdp1.vram.cmd[0].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__SYSTEM_CLIP_COORDINATES; vdp1.vram.cmd[0].LINK = 0; vdp1.vram.cmd[0].XC = 319; vdp1.vram.cmd[0].YC = 239; vdp1.vram.cmd[1].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__LOCAL_COORDINATE; vdp1.vram.cmd[1].LINK = 0; vdp1.vram.cmd[1].XA = 0; vdp1.vram.cmd[1].YA = 0; vdp1.vram.cmd[2].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__NORMAL_SPRITE; vdp1.vram.cmd[2].LINK = 0; // The "end code" is 0xf, which is being used in the mai sprite palette. If // both transparency and end codes are enabled, it seems there are only 14 // usable colors in the 4-bit color mode. vdp1.vram.cmd[2].PMOD = PMOD__ECD | PMOD__COLOR_MODE__COLOR_BANK_16; vdp1.vram.cmd[2].COLR = COLR__COLOR_BANK__TYPE0__PR(0) | 0; vdp1.vram.cmd[2].SRCA = mai_character_address >> 3; vdp1.vram.cmd[2].SIZE = SIZE__X(72) | SIZE__Y(100); vdp1.vram.cmd[2].XA = 100; vdp1.vram.cmd[2].YA = 100; vdp1.vram.cmd[3].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__NORMAL_SPRITE; vdp1.vram.cmd[3].LINK = 0; // The "end code" is 0xf, which is being used in the mai sprite palette. If // both transparency and end codes are enabled, it seems there are only 14 // usable colors in the 4-bit color mode. vdp1.vram.cmd[3].PMOD = PMOD__ECD | PMOD__COLOR_MODE__COLOR_BANK_16; vdp1.vram.cmd[3].COLR = COLR__COLOR_BANK__TYPE0__PR(1) | 32; vdp1.vram.cmd[3].SRCA = haohmaru_character_address >> 3; vdp1.vram.cmd[3].SIZE = SIZE__X(104) | SIZE__Y(132); vdp1.vram.cmd[3].XA = 120; vdp1.vram.cmd[3].YA = 110; vdp1.vram.cmd[4].CTRL = CTRL__END; // start drawing (execute the command list) on every frame vdp1.reg.PTMR = PTMR__PTM__FRAME_CHANGE; int dir = 1; int ratio = 0; while (1) { v_blank_in(); // increment/decrement the color calculation ratio once every 4 frames vdp2.reg.CCRSA = CCRSA__S0CCRT(ratio >> 2); ratio += dir; if (ratio >= (32 << 2) || ratio < 0) { dir = -dir; ratio += dir; } } }