#include #include "vdp2.h" #include "vdp1.h" extern void * _mai_data_pal_start __asm("_binary_res_mai_data_pal_start"); extern void * _mai_data_pal_size __asm("_binary_res_mai_data_pal_size"); extern void * _mai00_data_start __asm("_binary_res_mai00_data_start"); extern void * _mai00_data_size __asm("_binary_res_mai00_data_size"); inline constexpr uint16_t rgb15(const uint8_t * rgb24) { return ((rgb24[2] >> 3) << 10) // blue | ((rgb24[1] >> 3) << 5) // green | ((rgb24[0] >> 3) << 0); // red } uint32_t color_lookup_table(const uint32_t top) { const uint32_t buf_size = reinterpret_cast(&_mai_data_pal_size); if (buf_size != (0x20 * 3 / 2)) while (1); // halt if buf_size is incorrect const uint8_t * buf = reinterpret_cast(&_mai_data_pal_start); // "The size of a color lookup table is 20H (32) bytes" // (assume top is already aligned to 0x20) const uint32_t table_address = top - 0x20; // "The color lookup table defines the respective color codes of 16 colors in // VRAM as 16-bit data" uint16_t * table = &vdp1.vram.u16[(table_address / 2)]; uint32_t buf_ix = 0; for (uint32_t i = 0; i < (buf_size / 3); i++) { // there is a typo in "5.2 Color Lookup Tables" "If RGB code, MSB = 0" // should be "MSB = 1". The "MSB = 0" claim is correctly contradicted later. table[i] = 1 << 15 | rgb15(&buf[buf_ix]); // _mai_data_pal is rgb24, 3 bytes per color buf_ix += 3; } return table_address; } uint32_t character_pattern_table(const uint32_t top) { const uint32_t buf_size = reinterpret_cast(&_mai00_data_size); const uint32_t * buf = reinterpret_cast(&_mai00_data_start); // Unlike vdp2 cell format, vdp1 sprites appear to be much more dimensionally // flexible. The data is interpreted as a row-major packed array, where the // row/horizontal stride is equal to the sprite width (as configured in the // draw command). This is identical to how the input palette index data is // structured, so there is no transformation to do here, only a plain memory // copy. // Divide `buf_size` by two because this converts (indexed color) 8 bit pixels // to 4 bit pixels. Round up to the nearest 0x20 (for an 8000 pixel/8000 byte // image, this rounding is a no-op). const uint32_t table_size = ((buf_size / 2) + 0x20 - 1) & (-0x20); const uint32_t table_address = top - table_size; uint16_t * table = &vdp1.vram.u16[(table_address / 2)]; // `table_size` is in bytes; divide by two to get uint16_t indicies. uint32_t buf_ix = 0; for (uint32_t table_ix = 0; table_ix < (table_size / 2); table_ix++) { uint32_t tmp = buf[buf_ix]; table[table_ix] = (((tmp >> 24) & 0xf) << 12) | (((tmp >> 16) & 0xf) << 8 ) | (((tmp >> 8 ) & 0xf) << 4 ) | (((tmp >> 0 ) & 0xf) << 0 ); buf_ix += 1; } return table_address; } void main() { uint32_t color_address, character_address; uint32_t top = (sizeof (union vdp1_vram)); top = color_address = color_lookup_table(top); top = character_address = character_pattern_table(top); // DISP: Please make sure to change this bit from 0 to 1 during V blank. vdp2.reg.TVMD = ( TVMD__DISP | TVMD__LSMD__NON_INTERLACE | TVMD__VRESO__240 | TVMD__HRESO__NORMAL_320); // VDP2 User's Manual: // "When sprite data is in an RGB format, sprite register 0 is selected" // "When the value of a priority number is 0h, it is read as transparent" // // From a VDP2 perspective: in VDP1 16-color lookup table mode, VDP1 is still // sending RGB data to VDP2. This sprite color data as configured in // `color_lookup_table` from a VDP2 priority perspective uses sprite register 0. // // The power-on value of PRISA is zero. Set the priority for sprite register 0 // to some number greater than zero, so that the color data is not interpreted // as "transparent". vdp2.reg.PRISA = PRISA__S0PRIN(1); // Sprite register 0 PRIority Number /* TVM settings must be performed from the second H-blank IN interrupt after the V-blank IN interrupt to the H-blank IN interrupt immediately after the V-blank OUT interrupt. */ // "normal" display resolution, 16 bits per pixel, 512x256 framebuffer vdp1.reg.TVMR = TVMR__TVM__NORMAL; // swap framebuffers every 1 cycle; non-interlace vdp1.reg.FBCR = 0; // during a framebuffer erase cycle, write the color "black" to each pixel constexpr uint16_t black = 0x0000; vdp1.reg.EWDR = black; // the EWLR/EWRR macros use somewhat nontrivial math for the X coordinates // erase upper-left coordinate vdp1.reg.EWLR = EWLR__16BPP_X1(0) | EWLR__Y1(0); // erase lower-right coordinate vdp1.reg.EWRR = EWRR__16BPP_X3(319) | EWRR__Y3(239); vdp1.vram.cmd[0].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__SYSTEM_CLIP_COORDINATES; vdp1.vram.cmd[0].LINK = 0; vdp1.vram.cmd[0].XC = 319; vdp1.vram.cmd[0].YC = 239; vdp1.vram.cmd[1].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__LOCAL_COORDINATE; vdp1.vram.cmd[1].LINK = 0; vdp1.vram.cmd[1].XA = 0; vdp1.vram.cmd[1].YA = 0; vdp1.vram.cmd[2].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__NORMAL_SPRITE; vdp1.vram.cmd[2].LINK = 0; // The "end code" is 0xf, which is being used in the mai sprite palette. If // both transparency and end codes are enabled, it seems there are only 14 // usable colors in the 4-bit color mode. vdp1.vram.cmd[2].PMOD = PMOD__ECD | PMOD__COLOR_MODE__LOOKUP_TABLE_16; // It appears Kronos does not correctly calculate the color address in the // VDP1 debugger. Kronos will report FFFC when the actual color table address // in this example is 7FFE0. vdp1.vram.cmd[2].COLR = color_address >> 3; // non-palettized (rgb15) color data vdp1.vram.cmd[2].SRCA = character_address >> 3; vdp1.vram.cmd[2].SIZE = SIZE__X(72) | SIZE__Y(100); vdp1.vram.cmd[2].XA = 100; vdp1.vram.cmd[2].YA = 100; vdp1.vram.cmd[3].CTRL = CTRL__END; // start drawing (execute the command list) on every frame vdp1.reg.PTMR = PTMR__PTM__FRAME_CHANGE; } extern "C" void start(void) { main(); while (1) {} }