vdp1: add normal_sprite_animated example

This commit is contained in:
Zack Buhman 2023-01-28 18:22:48 -08:00
parent 4af5a3ba92
commit b5f675ee25
23 changed files with 210 additions and 6 deletions

1
.gitignore vendored
View File

@ -7,3 +7,4 @@
*.ppm
*.png
*.out
res/mai.data

View File

@ -28,7 +28,12 @@ raytracing/raytracing.elf: raytracing/main-saturn.o raytracing/raytracing.o sh/l
vdp2/nbg0.elf: vdp2/nbg0.o res/butterfly.data.o res/butterfly.data.pal.o
vdp1/polygon.elf: vdp1/polygon.o
vdp1/normal_sprite.elf: vdp1/normal_sprite.o res/mai.data.o res/mai.data.pal.o
vdp1/normal_sprite.elf: vdp1/normal_sprite.o res/mai00.data.o res/mai.data.pal.o
res/mai.data: res/mai00.data res/mai01.data res/mai02.data res/mai03.data res/mai04.data res/mai05.data res/mai06.data res/mai07.data res/mai08.data res/mai09.data res/mai10.data res/mai11.data res/mai12.data res/mai13.data res/mai14.data res/mai15.data
cat $(sort $^) > $@
vdp1/normal_sprite_animated.elf: vdp1/normal_sprite_animated.o res/mai.data.o res/mai.data.pal.o
# clean
clean: clean-sh

Binary file not shown.

Binary file not shown.

BIN
res/mai.xcf Normal file

Binary file not shown.

BIN
res/mai00.data Normal file

Binary file not shown.

BIN
res/mai01.data Normal file

Binary file not shown.

BIN
res/mai02.data Normal file

Binary file not shown.

BIN
res/mai03.data Normal file

Binary file not shown.

BIN
res/mai04.data Normal file

Binary file not shown.

BIN
res/mai05.data Normal file

Binary file not shown.

BIN
res/mai06.data Normal file

Binary file not shown.

BIN
res/mai07.data Normal file

Binary file not shown.

BIN
res/mai08.data Normal file

Binary file not shown.

BIN
res/mai09.data Normal file

Binary file not shown.

BIN
res/mai10.data Normal file

Binary file not shown.

BIN
res/mai11.data Normal file

Binary file not shown.

BIN
res/mai12.data Normal file

Binary file not shown.

BIN
res/mai13.data Normal file

Binary file not shown.

BIN
res/mai14.data Normal file

Binary file not shown.

BIN
res/mai15.data Normal file

Binary file not shown.

View File

@ -5,8 +5,8 @@
extern void * _mai_data_pal_start __asm("_binary_res_mai_data_pal_start");
extern void * _mai_data_pal_size __asm("_binary_res_mai_data_pal_size");
extern void * _mai_data_start __asm("_binary_res_mai_data_start");
extern void * _mai_data_size __asm("_binary_res_mai_data_size");
extern void * _mai00_data_start __asm("_binary_res_mai00_data_start");
extern void * _mai00_data_size __asm("_binary_res_mai00_data_size");
inline constexpr uint16_t rgb15(const uint8_t * rgb24)
{
@ -45,8 +45,8 @@ uint32_t color_lookup_table(const uint32_t top)
uint32_t character_pattern_table(const uint32_t top)
{
const uint32_t buf_size = reinterpret_cast<uint32_t>(&_mai_data_size);
const uint32_t * buf = reinterpret_cast<uint32_t*>(&_mai_data_start);
const uint32_t buf_size = reinterpret_cast<uint32_t>(&_mai00_data_size);
const uint32_t * buf = reinterpret_cast<uint32_t*>(&_mai00_data_start);
// Unlike vdp2 cell format, vdp1 sprites appear to be much more dimensionally
// flexible. The data is interpreted as a row-major packed array, where the
@ -141,7 +141,7 @@ void main()
// in this example is 7FFE0.
vdp1.vram.cmd[2].COLR = color_address >> 3; // non-palettized (rgb15) color data
vdp1.vram.cmd[2].SRCA = character_address >> 3;
vdp1.vram.cmd[2].SIZE = SIZE__X(80) | SIZE__Y(100);
vdp1.vram.cmd[2].SIZE = SIZE__X(72) | SIZE__Y(100);
vdp1.vram.cmd[2].XA = 100;
vdp1.vram.cmd[2].YA = 100;

View File

@ -0,0 +1,198 @@
#include <stdint.h>
#include "vdp2.h"
#include "vdp1.h"
#include "scu.h"
#include "sh2.h"
extern void * _mai_data_pal_start __asm("_binary_res_mai_data_pal_start");
extern void * _mai_data_pal_size __asm("_binary_res_mai_data_pal_size");
extern void * _mai_data_start __asm("_binary_res_mai_data_start");
extern void * _mai_data_size __asm("_binary_res_mai_data_size");
inline constexpr uint16_t rgb15(const uint8_t * rgb24)
{
return ((rgb24[2] >> 3) << 10) // blue
| ((rgb24[1] >> 3) << 5) // green
| ((rgb24[0] >> 3) << 0); // red
}
uint32_t color_lookup_table(const uint32_t top)
{
const uint32_t buf_size = reinterpret_cast<uint32_t>(&_mai_data_pal_size);
if (buf_size != (0x20 * 3 / 2)) while (1); // halt if buf_size is incorrect
const uint8_t * buf = reinterpret_cast<uint8_t*>(&_mai_data_pal_start);
// "The size of a color lookup table is 20H (32) bytes"
// (assume top is already aligned to 0x20)
const uint32_t table_address = top - 0x20;
// "The color lookup table defines the respective color codes of 16 colors in
// VRAM as 16-bit data"
uint16_t * table = &vdp1.vram.u16[(table_address / 2)];
uint32_t buf_ix = 0;
for (uint32_t i = 0; i < (buf_size / 3); i++) {
// there is a typo in "5.2 Color Lookup Tables" "If RGB code, MSB = 0"
// should be "MSB = 1". The "MSB = 0" claim is correctly contradicted later.
table[i] = 1 << 15 | rgb15(&buf[buf_ix]);
// _mai_data_pal is rgb24, 3 bytes per color
buf_ix += 3;
}
return table_address;
}
uint32_t character_pattern_table(const uint32_t top)
{
const uint32_t buf_size = reinterpret_cast<uint32_t>(&_mai_data_size);
const uint32_t * buf = reinterpret_cast<uint32_t*>(&_mai_data_start);
// Unlike vdp2 cell format, vdp1 sprites appear to be much more dimensionally
// flexible. The data is interpreted as a row-major packed array, where the
// row/horizontal stride is equal to the sprite width (as configured in the
// draw command). This is identical to how the input palette index data is
// structured, so there is no transformation to do here, only a plain memory
// copy.
// Divide `buf_size` by two because this converts (indexed color) 8 bit pixels
// to 4 bit pixels. Round up to the nearest 0x20 (for an 8000 pixel/8000 byte
// image, this rounding is a no-op).
const uint32_t table_size = ((buf_size / 2) + 0x20 - 1) & (-0x20);
const uint32_t table_address = top - table_size;
uint16_t * table = &vdp1.vram.u16[(table_address / 2)];
// `table_size` is in bytes; divide by two to get uint16_t indicies.
uint32_t buf_ix = 0;
for (uint32_t table_ix = 0; table_ix < (table_size / 2); table_ix++) {
uint32_t tmp = buf[buf_ix];
table[table_ix] = (((tmp >> 24) & 0xf) << 12)
| (((tmp >> 16) & 0xf) << 8 )
| (((tmp >> 8 ) & 0xf) << 4 )
| (((tmp >> 0 ) & 0xf) << 0 );
buf_ix += 1;
}
return table_address;
}
constexpr uint32_t sprite_width = 72;
constexpr uint32_t sprite_height = 100;
constexpr uint32_t sprite_last_frame = 15;
static uint32_t color_address, character_address;
static uint32_t sprite_frame_index;
static uint32_t animation_timer;
// __attribute__ ((interrupt_handler)) changes code generation behavior for this
// function works. `rts` as generated in normal functions is replaced with
// `rte`.
void v_blank_in(void) __attribute__ ((interrupt_handler));
void v_blank_in(void)
{
// clear V_BLANK_IN interrupt status
scu.reg.IST &= ~(IST__V_BLANK_IN);
if (++animation_timer < 4)
return;
else
animation_timer = 0;
// 4 bits == 0.5 bytes per pixel
constexpr uint32_t sprite_size = (sprite_width * sprite_height) / 2;
sprite_frame_index = sprite_frame_index == sprite_last_frame ? 0 : sprite_frame_index + 1;
vdp1.vram.cmd[2].SRCA = SRCA(character_address + (sprite_size * sprite_frame_index));
}
void main()
{
uint32_t top = (sizeof (union vdp1_vram));
top = color_address = color_lookup_table(top);
top = character_address = character_pattern_table(top);
// DISP: Please make sure to change this bit from 0 to 1 during V blank.
vdp2.reg.TVMD = ( TVMD__DISP | TVMD__LSMD__NON_INTERLACE
| TVMD__VRESO__240 | TVMD__HRESO__NORMAL_320);
// VDP2 User's Manual:
// "When sprite data is in an RGB format, sprite register 0 is selected"
// "When the value of a priority number is 0h, it is read as transparent"
//
// From a VDP2 perspective: in VDP1 16-color lookup table mode, VDP1 is still
// sending RGB data to VDP2. This sprite color data as configured in
// `color_lookup_table` from a VDP2 priority perspective uses sprite register 0.
//
// The power-on value of PRISA is zero. Set the priority for sprite register 0
// to some number greater than zero, so that the color data is not interpreted
// as "transparent".
vdp2.reg.PRISA = PRISA__S0PRIN(1); // Sprite register 0 PRIority Number
/* TVM settings must be performed from the second H-blank IN interrupt after the
V-blank IN interrupt to the H-blank IN interrupt immediately after the V-blank
OUT interrupt. */
// "normal" display resolution, 16 bits per pixel, 512x256 framebuffer
vdp1.reg.TVMR = TVMR__TVM__NORMAL;
// swap framebuffers every 1 cycle; non-interlace
vdp1.reg.FBCR = 0;
// during a framebuffer erase cycle, write the color "black" to each pixel
constexpr uint16_t black = 0x0000;
vdp1.reg.EWDR = black;
// the EWLR/EWRR macros use somewhat nontrivial math for the X coordinates
// erase upper-left coordinate
vdp1.reg.EWLR = EWLR__16BPP_X1(0) | EWLR__Y1(0);
// erase lower-right coordinate
vdp1.reg.EWRR = EWRR__16BPP_X3(319) | EWRR__Y3(239);
vdp1.vram.cmd[0].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__SYSTEM_CLIP_COORDINATES;
vdp1.vram.cmd[0].LINK = 0;
vdp1.vram.cmd[0].XC = 319;
vdp1.vram.cmd[0].YC = 239;
vdp1.vram.cmd[1].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__LOCAL_COORDINATE;
vdp1.vram.cmd[1].LINK = 0;
vdp1.vram.cmd[1].XA = 0;
vdp1.vram.cmd[1].YA = 0;
vdp1.vram.cmd[2].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__NORMAL_SPRITE;
vdp1.vram.cmd[2].LINK = 0;
// The "end code" is 0xf, which is being used in the mai sprite palette. If
// both transparency and end codes are enabled, it seems there are only 14
// usable colors in the 4-bit color mode.
vdp1.vram.cmd[2].PMOD = PMOD__ECD | PMOD__COLOR_MODE__LOOKUP_TABLE_16;
// It appears Kronos does not correctly calculate the color address in the
// VDP1 debugger. Kronos will report FFFC when the actual color table address
// in this example is 7FFE0.
vdp1.vram.cmd[2].COLR = COLR__ADDRESS(color_address); // non-palettized (rgb15) color data
vdp1.vram.cmd[2].SRCA = SRCA(character_address);
vdp1.vram.cmd[2].SIZE = SIZE__X(sprite_width) | SIZE__Y(sprite_height);
vdp1.vram.cmd[2].XA = 100;
vdp1.vram.cmd[2].YA = 100;
vdp1.vram.cmd[3].CTRL = CTRL__END;
// start drawing (execute the command list) on every frame
vdp1.reg.PTMR = PTMR__PTM__FRAME_CHANGE;
//
sprite_frame_index = 0;
animation_timer = 0;
sh2_vec[SCU_VEC__V_BLANK_IN] = reinterpret_cast<uint32_t>(&v_blank_in);
// reset/enable V_BLANK_IN interrupt
scu.reg.IST = 0;
scu.reg.IMS = ~(IMS__V_BLANK_IN);
}
extern "C"
void start(void)
{
main();
while (1) {}
}