r500/drm/texture_cube_clear_zwrite_vertex_shader.c

1147 lines
33 KiB
C

#include <assert.h>
#include <errno.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <xf86drm.h>
#include <libdrm/radeon_drm.h>
#include "3d_registers.h"
#include "3d_registers_undocumented.h"
#include "3d_registers_bits.h"
#include "command_processor.h"
#define PI (3.14159274101257324219f)
#define PI_2 (PI * 2.0f)
#define I_PI_2 (1.0f / (PI_2))
static inline uint32_t rreg(void * rmmio, uint32_t offset)
{
uint32_t value = *((volatile uint32_t *)(((uintptr_t)rmmio) + offset));
asm volatile ("" ::: "memory");
return value;
}
static inline void wreg(void * rmmio, uint32_t offset, uint32_t value)
{
*((volatile uint32_t *)(((uintptr_t)rmmio) + offset)) = value;
asm volatile ("" ::: "memory");
}
static void * read_file(const char * filename)
{
int fd = open(filename, O_RDONLY);
if (fd == -1) {
fprintf(stderr, "open(%s): %s\n", filename, strerror(errno));
return NULL;
}
off_t size = lseek(fd, 0, SEEK_END);
if (size == (off_t)-1) {
fprintf(stderr, "lseek(%s, SEEK_END): %s\n", filename, strerror(errno));
return NULL;
}
off_t start = lseek(fd, 0, SEEK_SET);
if (start == (off_t)-1) {
fprintf(stderr, "lseek(%s, SEEK_SET): %s\n", filename, strerror(errno));
return NULL;
}
void * buf = malloc(size+1);
ssize_t read_size = read(fd, buf, size);
if (read_size == -1) {
fprintf(stderr, "read(%s): %s\n", filename, strerror(errno));
return NULL;
}
((char*)buf)[read_size] = 0;
close(fd);
return buf;
}
typedef struct {
float x;
float y;
float z;
} vec3;
typedef struct {
float x;
float y;
} vec2;
typedef struct {
int p;
int t;
} face;
const vec3 position[] = {
{ 1.0, 1.0, -1.0},
{ 1.0, -1.0, -1.0},
{ 1.0, 1.0, 1.0},
{ 1.0, -1.0, 1.0},
{-1.0, 1.0, -1.0},
{-1.0, -1.0, -1.0},
{-1.0, 1.0, 1.0},
{-1.0, -1.0, 1.0},
};
const vec2 texture[] = {
{1.0, 0.0},
{0.0, 1.0},
{0.0, 0.0},
{1.0, 1.0},
};
const face faces[] = {
{5,1}, {3,2}, {1,3},
{3,1}, {8,2}, {4,3},
{7,1}, {6,2}, {8,3},
{2,1}, {8,2}, {6,3},
{1,1}, {4,2}, {2,3},
{5,1}, {2,2}, {6,3},
{5,1}, {7,4}, {3,2},
{3,1}, {7,4}, {8,2},
{7,1}, {5,4}, {6,2},
{2,1}, {4,4}, {8,2},
{1,1}, {3,4}, {4,2},
{5,1}, {1,4}, {2,2},
};
static const int faces_length = (sizeof (faces)) / (sizeof (faces[0]));
static const uint32_t fragment_shader[] = {
#include "texture_cube.fs.inc"
#include "clear.fs.inc"
};
static const int fragment_shader_length = (sizeof (fragment_shader)) / (sizeof (fragment_shader[0]));
static const int fragment_shader_instructions = (fragment_shader_length / 6) - 1;
static const uint32_t vertex_shader[] = {
#include "cube_rotate.vs.inc"
#include "clear_nop.vs.inc"
};
static const int vertex_shader_length = (sizeof (vertex_shader)) / (sizeof (vertex_shader[0]));
static const int vertex_shader_instructions = (vertex_shader_length / 4) - 1;
union u32_f32 {
uint32_t u32;
float f32;
};
static union u32_f32 ib[16384];
int _3d_clear(int ix)
{
//////////////////////////////////////////////////////////////////////////////
// ZB
//////////////////////////////////////////////////////////////////////////////
T0V(ZB_CNTL
, ZB_CNTL__Z_ENABLE__ENABLED // 1
| ZB_CNTL__ZWRITEENABLE__ENABLE // 1
);
T0V(ZB_ZSTENCILCNTL
, ZB_ZSTENCILCNTL__ZFUNC__ALWAYS // greater than
);
T0V(ZB_FORMAT
, ZB_FORMAT__DEPTHFORMAT(2) // 24-bit integer Z, 8 bit stencil
);
T0V(ZB_DEPTHOFFSET, 0);
T3(_NOP, 0);
ib[ix++].u32 = 1 * 4; // index into relocs array
T0V(ZB_DEPTHPITCH
, ZB_DEPTHPITCH__DEPTHPITCH(1600 >> 2)
| ZB_DEPTHPITCH__DEPTHMACROTILE(1)
| ZB_DEPTHPITCH__DEPTHMICROTILE(1)
);
T3(_NOP, 0);
ib[ix++].u32 = 1 * 4; // index into relocs array
//////////////////////////////////////////////////////////////////////////////
// RS
//////////////////////////////////////////////////////////////////////////////
T0V(RS_IP_0
, RS_IP__TEX_PTR_S(0)
| RS_IP__TEX_PTR_T(0)
| RS_IP__TEX_PTR_R(0)
| RS_IP__TEX_PTR_Q(0)
| RS_IP__COL_PTR(0)
| RS_IP__COL_FMT(6) // Zero components (0,0,0,1)
| RS_IP__OFFSET_EN(0)
);
T0V(RS_COUNT
, RS_COUNT__IT_COUNT(0)
| RS_COUNT__IC_COUNT(1)
| RS_COUNT__W_ADDR(0)
| RS_COUNT__HIRES_EN(1)
);
T0V(RS_INST_COUNT, 0x00000000);
T0V(RS_INST_0, 0x00000000);
//////////////////////////////////////////////////////////////////////////////
// TX
//////////////////////////////////////////////////////////////////////////////
T0V(TX_ENABLE, 0x00000000);
//////////////////////////////////////////////////////////////////////////////
// VAP_PVS
//////////////////////////////////////////////////////////////////////////////
T0V(VAP_PVS_CODE_CNTL_0
, VAP_PVS_CODE_CNTL_0__PVS_FIRST_INST(vertex_shader_instructions)
| VAP_PVS_CODE_CNTL_0__PVS_XYZW_VALID_INST(vertex_shader_instructions)
| VAP_PVS_CODE_CNTL_0__PVS_LAST_INST(vertex_shader_instructions)
);
T0V(VAP_PVS_CODE_CNTL_1
, VAP_PVS_CODE_CNTL_1__PVS_LAST_VTX_SRC_INST(vertex_shader_instructions)
);
//////////////////////////////////////////////////////////////////////////////
// VAP
//////////////////////////////////////////////////////////////////////////////
T0V(VAP_CLIP_CNTL
, VAP_CLIP_CNTL__CLIP_DISABLE(1)
);
T0V(VAP_VTE_CNTL
, VAP_VTE_CNTL__VTX_XY_FMT(1)
| VAP_VTE_CNTL__VTX_Z_FMT(1)
);
T0V(VAP_CNTL_STATUS, VAP_CNTL_STATUS__PVS_BYPASS(0));
T0V(VAP_PROG_STREAM_CNTL_0
, VAP_PROG_STREAM_CNTL__DATA_TYPE_0__FLOAT_2
| VAP_PROG_STREAM_CNTL__SKIP_DWORDS_0(0)
| VAP_PROG_STREAM_CNTL__DST_VEC_LOC_0(0)
| VAP_PROG_STREAM_CNTL__LAST_VEC_0(1)
);
T0V(VAP_PROG_STREAM_CNTL_EXT_0
, VAP_PROG_STREAM_CNTL_EXT__SWIZZLE_SELECT_X_0__SELECT_X
| VAP_PROG_STREAM_CNTL_EXT__SWIZZLE_SELECT_Y_0__SELECT_Y
| VAP_PROG_STREAM_CNTL_EXT__SWIZZLE_SELECT_Z_0__SELECT_FP_ZERO
| VAP_PROG_STREAM_CNTL_EXT__SWIZZLE_SELECT_W_0__SELECT_FP_ONE
| VAP_PROG_STREAM_CNTL_EXT__WRITE_ENA_0(0b1111)
);
T0V(VAP_VTX_SIZE
, VAP_VTX_SIZE__DWORDS_PER_VTX(2)
);
T0V(VAP_INDEX_OFFSET, 0x00000000);
T0V(VAP_OUT_VTX_FMT_0
, VAP_OUT_VTX_FMT_0__VTX_POS_PRESENT(1));
T0V(VAP_OUT_VTX_FMT_1
, 0x0);
//////////////////////////////////////////////////////////////////////////////
// GA_US
//////////////////////////////////////////////////////////////////////////////
T0V(US_CODE_RANGE
, US_CODE_RANGE__CODE_ADDR(fragment_shader_instructions)
| US_CODE_RANGE__CODE_SIZE(0)
);
T0V(US_CODE_OFFSET
, US_CODE_OFFSET__OFFSET_ADDR(fragment_shader_instructions)
);
T0V(US_CODE_ADDR
, US_CODE_ADDR__START_ADDR(0)
| US_CODE_ADDR__END_ADDR(0)
);
//////////////////////////////////////////////////////////////////////////////
// 3D_DRAW
//////////////////////////////////////////////////////////////////////////////
const float center[] = {
800.0f, 600.0f,
};
T3(_3D_DRAW_IMMD_2, (1 + 2) - 1);
ib[ix++].u32
= VAP_VF_CNTL__PRIM_TYPE(1) // point list
| VAP_VF_CNTL__PRIM_WALK(3)
| VAP_VF_CNTL__INDEX_SIZE(0)
| VAP_VF_CNTL__VTX_REUSE_DIS(0)
| VAP_VF_CNTL__DUAL_INDEX_MODE(0)
| VAP_VF_CNTL__USE_ALT_NUM_VERTS(0)
| VAP_VF_CNTL__NUM_VERTICES(1)
;
for (int i = 0; i < 2; i++) {
ib[ix++].f32 = center[i];
}
return ix;
}
int _3d_cube(int ix, float theta)
{
printf("faces length %d\n", faces_length);
//////////////////////////////////////////////////////////////////////////////
// ZB
//////////////////////////////////////////////////////////////////////////////
T0V(ZB_CNTL
, ZB_CNTL__Z_ENABLE__ENABLED // 1
| ZB_CNTL__ZWRITEENABLE__ENABLE // 1
);
T0V(ZB_ZSTENCILCNTL
, ZB_ZSTENCILCNTL__ZFUNC(5) // greater than
);
T0V(ZB_FORMAT
, ZB_FORMAT__DEPTHFORMAT(2) // 24-bit integer Z, 8 bit stencil
);
T0V(ZB_DEPTHOFFSET, 0);
T3(_NOP, 0);
ib[ix++].u32 = 1 * 4; // index into relocs array
T0V(ZB_DEPTHPITCH
, ZB_DEPTHPITCH__DEPTHPITCH(1600 >> 2)
| ZB_DEPTHPITCH__DEPTHMACROTILE(1)
| ZB_DEPTHPITCH__DEPTHMICROTILE(1)
);
T3(_NOP, 0);
ib[ix++].u32 = 1 * 4; // index into relocs array
//////////////////////////////////////////////////////////////////////////////
// RS
//////////////////////////////////////////////////////////////////////////////
T0V(RS_IP_0
, RS_IP__TEX_PTR_S(0)
| RS_IP__TEX_PTR_T(1)
| RS_IP__TEX_PTR_R(2)
| RS_IP__TEX_PTR_Q(3)
| RS_IP__COL_PTR(0)
| RS_IP__COL_FMT(0)
| RS_IP__OFFSET_EN(0)
);
T0V(RS_COUNT
, RS_COUNT__IT_COUNT(4)
| RS_COUNT__IC_COUNT(0)
| RS_COUNT__W_ADDR(0)
| RS_COUNT__HIRES_EN(1)
);
T0V(RS_INST_COUNT, 0x00000000);
T0V(RS_INST_0
, RS_INST__TEX_ID(0)
| RS_INST__TEX_CN(1)
| RS_INST__TEX_ADDR(0)
);
//////////////////////////////////////////////////////////////////////////////
// TX
//////////////////////////////////////////////////////////////////////////////
T0V(TX_INVALTAGS, 0x00000000);
T0V(TX_ENABLE
, TX_ENABLE__TEX_0_ENABLE__ENABLE);
T0V(TX_FILTER0_0
, TX_FILTER0__MAG_FILTER__LINEAR
| TX_FILTER0__MIN_FILTER__LINEAR
);
T0V(TX_FILTER1_0
, TX_FILTER1__LOD_BIAS(1)
);
T0V(TX_BORDER_COLOR_0, 0);
T0V(TX_FORMAT0_0
, TX_FORMAT0__TXWIDTH(1024 - 1)
| TX_FORMAT0__TXHEIGHT(1024 - 1)
);
T0V(TX_FORMAT1_0
, TX_FORMAT1__TXFORMAT__TX_FMT_8_8_8_8
| TX_FORMAT1__SEL_ALPHA(5)
| TX_FORMAT1__SEL_RED(0)
| TX_FORMAT1__SEL_GREEN(1)
| TX_FORMAT1__SEL_BLUE(2)
| TX_FORMAT1__TEX_COORD_TYPE__2D
);
T0V(TX_FORMAT2_0, 0);
T0V(TX_OFFSET_0
//, TX_OFFSET__MACRO_TILE(1)
//| TX_OFFSET__MICRO_TILE(1)
, 0
);
T3(_NOP, 0);
ib[ix++].u32 = 2 * 4; // index into relocs array
//////////////////////////////////////////////////////////////////////////////
// VAP_PVS
//////////////////////////////////////////////////////////////////////////////
T0V(VAP_PVS_CONST_CNTL
, VAP_PVS_CONST_CNTL__PVS_CONST_BASE_OFFSET(0)
| VAP_PVS_CONST_CNTL__PVS_MAX_CONST_ADDR(1)
);
T0V(VAP_PVS_VECTOR_INDX_REG
, VAP_PVS_VECTOR_INDX_REG__OCTWORD_OFFSET(1024)
);
float theta1 = theta;
//float theta2 = 3.14f * theta;
float theta2 = theta;
const float consts[] = {
I_PI_2, 0.5f, PI_2, -PI,
theta1, theta2, 0.2f, 0.5f,
};
int consts_length = (sizeof (consts)) / (sizeof (consts[0]));
T0_ONE_REG(VAP_PVS_VECTOR_DATA_REG_128, (consts_length - 1));
for (int i = 0; i < consts_length; i++)
ib[ix++].f32 = consts[i];
T0V(VAP_PVS_CODE_CNTL_0
, VAP_PVS_CODE_CNTL_0__PVS_FIRST_INST(0)
| VAP_PVS_CODE_CNTL_0__PVS_XYZW_VALID_INST((vertex_shader_instructions - 1))
| VAP_PVS_CODE_CNTL_0__PVS_LAST_INST((vertex_shader_instructions - 1))
);
T0V(VAP_PVS_CODE_CNTL_1
, VAP_PVS_CODE_CNTL_1__PVS_LAST_VTX_SRC_INST((vertex_shader_instructions - 1))
);
//////////////////////////////////////////////////////////////////////////////
// VAP
//////////////////////////////////////////////////////////////////////////////
T0V(VAP_CLIP_CNTL
, VAP_CLIP_CNTL__PS_UCP_MODE(3)
);
T0V(VAP_VTE_CNTL
, VAP_VTE_CNTL__VPORT_X_SCALE_ENA(1)
| VAP_VTE_CNTL__VPORT_X_OFFSET_ENA(1)
| VAP_VTE_CNTL__VPORT_Y_SCALE_ENA(1)
| VAP_VTE_CNTL__VPORT_Y_OFFSET_ENA(1)
| VAP_VTE_CNTL__VPORT_Z_SCALE_ENA(1)
| VAP_VTE_CNTL__VPORT_Z_OFFSET_ENA(1)
| VAP_VTE_CNTL__VTX_XY_FMT(0)
| VAP_VTE_CNTL__VTX_Z_FMT(0)
| VAP_VTE_CNTL__VTX_W0_FMT(1)
| VAP_VTE_CNTL__SERIAL_PROC_ENA(0)
);
T0V(VAP_CNTL_STATUS, 0);
T0V(VAP_PROG_STREAM_CNTL_0
, VAP_PROG_STREAM_CNTL__DATA_TYPE_0__FLOAT_3
| VAP_PROG_STREAM_CNTL__SKIP_DWORDS_0(0)
| VAP_PROG_STREAM_CNTL__DST_VEC_LOC_0(0)
| VAP_PROG_STREAM_CNTL__LAST_VEC_0(0)
| VAP_PROG_STREAM_CNTL__DATA_TYPE_1__FLOAT_2
| VAP_PROG_STREAM_CNTL__SKIP_DWORDS_1(0)
| VAP_PROG_STREAM_CNTL__DST_VEC_LOC_1(1)
| VAP_PROG_STREAM_CNTL__LAST_VEC_1(1)
);
T0V(VAP_PROG_STREAM_CNTL_EXT_0
, VAP_PROG_STREAM_CNTL_EXT__SWIZZLE_SELECT_X_0__SELECT_X
| VAP_PROG_STREAM_CNTL_EXT__SWIZZLE_SELECT_Y_0__SELECT_Y
| VAP_PROG_STREAM_CNTL_EXT__SWIZZLE_SELECT_Z_0__SELECT_Z
| VAP_PROG_STREAM_CNTL_EXT__SWIZZLE_SELECT_W_0__SELECT_FP_ONE
| VAP_PROG_STREAM_CNTL_EXT__WRITE_ENA_0(0b1111) // XYZW
| VAP_PROG_STREAM_CNTL_EXT__SWIZZLE_SELECT_X_1__SELECT_X
| VAP_PROG_STREAM_CNTL_EXT__SWIZZLE_SELECT_Y_1__SELECT_Y
| VAP_PROG_STREAM_CNTL_EXT__SWIZZLE_SELECT_Z_1__SELECT_FP_ZERO
| VAP_PROG_STREAM_CNTL_EXT__SWIZZLE_SELECT_W_1__SELECT_FP_ONE
| VAP_PROG_STREAM_CNTL_EXT__WRITE_ENA_1(0b1111) // XYZW
);
T0V(VAP_VTX_SIZE
, VAP_VTX_SIZE__DWORDS_PER_VTX(5)
);
T0V(VAP_INDEX_OFFSET, 0x00000000);
T0V(VAP_VF_MAX_VTX_INDX
, VAP_VF_MAX_VTX_INDX__MAX_INDX(faces_length - 1)
);
T0V(VAP_VF_MIN_VTX_INDX
, VAP_VF_MIN_VTX_INDX__MIN_INDX(0)
);
T0V(VAP_OUT_VTX_FMT_0
, VAP_OUT_VTX_FMT_0__VTX_POS_PRESENT(1));
T0V(VAP_OUT_VTX_FMT_1
, VAP_OUT_VTX_FMT_1__TEX_0_COMP_CNT(4));
//////////////////////////////////////////////////////////////////////////////
// GA_US
//////////////////////////////////////////////////////////////////////////////
T0V(US_CODE_RANGE
, US_CODE_RANGE__CODE_ADDR(0)
| US_CODE_RANGE__CODE_SIZE(fragment_shader_instructions - 1)
);
T0V(US_CODE_OFFSET
, US_CODE_OFFSET__OFFSET_ADDR(0)
);
T0V(US_CODE_ADDR
, US_CODE_ADDR__START_ADDR(0)
| US_CODE_ADDR__END_ADDR(fragment_shader_instructions - 1)
);
//////////////////////////////////////////////////////////////////////////////
// 3D_DRAW
//////////////////////////////////////////////////////////////////////////////
T3(_3D_DRAW_IMMD_2, (1 + faces_length * 5) - 1);
ib[ix++].u32
= VAP_VF_CNTL__PRIM_TYPE(4)
| VAP_VF_CNTL__PRIM_WALK(3)
| VAP_VF_CNTL__INDEX_SIZE(0)
| VAP_VF_CNTL__VTX_REUSE_DIS(0)
| VAP_VF_CNTL__DUAL_INDEX_MODE(0)
| VAP_VF_CNTL__USE_ALT_NUM_VERTS(0)
| VAP_VF_CNTL__NUM_VERTICES(faces_length)
;
for (int i = 0; i < faces_length; i++) {
vec3 p = position[faces[i].p - 1];
vec2 t = texture[faces[i].t - 1];
ib[ix++].f32 = p.x;
ib[ix++].f32 = p.y;
ib[ix++].f32 = p.z;
ib[ix++].f32 = t.x;
ib[ix++].f32 = t.y;
}
return ix;
}
int indirect_buffer(float theta)
{
int ix = 0;
T0V(RB3D_DSTCACHE_CTLSTAT
, RB3D_DSTCACHE_CTLSTAT__DC_FLUSH(0x2) // Flush dirty 3D data
| RB3D_DSTCACHE_CTLSTAT__DC_FREE(0x2) // Free 3D tags
);
T0V(ZB_ZCACHE_CTLSTAT
, ZB_ZCACHE_CTLSTAT__ZC_FLUSH(1)
| ZB_ZCACHE_CTLSTAT__ZC_FREE(1)
);
T0V(WAIT_UNTIL, 0x00020000);
T0V(GB_AA_CONFIG, 0x00000000);
T0V(RB3D_AARESOLVE_CTL, 0x00000000);
T0V(RB3D_CCTL
, RB3D_CCTL__INDEPENDENT_COLORFORMAT_ENABLE(1)
);
T0V(ZB_BW_CNTL, 0x00000000);
T0V(ZB_DEPTHCLEARVALUE, 0x00000000);
T0V(SC_HYPERZ_EN, 0x00000000);
T0V(GB_Z_PEQ_CONFIG, 0x00000000);
T0V(ZB_ZTOP
, ZB_ZTOP__ZTOP(1)
);
T0V(FG_ALPHA_FUNC, 0x00000000);
T0V(ZB_STENCILREFMASK, 0x00000000);
T0V(ZB_STENCILREFMASK_BF, 0x00000000);
T0V(FG_ALPHA_VALUE, 0x00000000);
T0V(RB3D_ROPCNTL, 0x00000000);
T0V(RB3D_BLENDCNTL, 0x00000000);
T0V(RB3D_ABLENDCNTL, 0x00000000);
T0V(RB3D_COLOR_CHANNEL_MASK
, RB3D_COLOR_CHANNEL_MASK__BLUE_MASK(1)
| RB3D_COLOR_CHANNEL_MASK__GREEN_MASK(1)
| RB3D_COLOR_CHANNEL_MASK__RED_MASK(1)
| RB3D_COLOR_CHANNEL_MASK__ALPHA_MASK(1)
);
T0V(RB3D_DITHER_CTL, 0x00000000);
T0V(RB3D_CONSTANT_COLOR_AR, 0x00000000);
T0V(RB3D_CONSTANT_COLOR_GB, 0x00000000);
T0V(SC_CLIP_0_A, 0x00000000);
T0V(SC_CLIP_0_B, 0xffffffff);
T0V(SC_SCREENDOOR, 0x00ffffff);
T0V(GB_SELECT, 0x00000000);
T0V(FG_FOG_BLEND, 0x00000000);
T0V(GA_OFFSET, 0x00000000);
T0V(SU_TEX_WRAP, 0x00000000);
T0Vf(SU_DEPTH_SCALE, 16777215.0f);
T0V(SU_DEPTH_OFFSET, 0x00000000);
T0V(SC_EDGERULE
, SC_EDGERULE__ER_TRI(5) // L-in,R-out,HT-in,HB-in
| SC_EDGERULE__ER_POINT(9) // L-out,R-in,HT-in,HB-out
| SC_EDGERULE__ER_LINE_LR(5) // L-in,R-out,HT-in,HB-out
| SC_EDGERULE__ER_LINE_RL(9) // L-out,R-in,HT-in,HB-out
| SC_EDGERULE__ER_LINE_TB(26) // T-in,B-out,VL-out,VR-in
| SC_EDGERULE__ER_LINE_BT(22) // T-out,B-in,VL-out,VR-in
);
T0V(RB3D_DISCARD_SRC_PIXEL_LTE_THRESHOLD
, RB3D_DISCARD_SRC_PIXEL_LTE_THRESHOLD__BLUE(1)
| RB3D_DISCARD_SRC_PIXEL_LTE_THRESHOLD__GREEN(1)
| RB3D_DISCARD_SRC_PIXEL_LTE_THRESHOLD__RED(1)
| RB3D_DISCARD_SRC_PIXEL_LTE_THRESHOLD__ALPHA(1)
);
T0V(RB3D_DISCARD_SRC_PIXEL_GTE_THRESHOLD
, RB3D_DISCARD_SRC_PIXEL_GTE_THRESHOLD__BLUE(254)
| RB3D_DISCARD_SRC_PIXEL_GTE_THRESHOLD__GREEN(254)
| RB3D_DISCARD_SRC_PIXEL_GTE_THRESHOLD__RED(254)
| RB3D_DISCARD_SRC_PIXEL_GTE_THRESHOLD__ALPHA(254)
);
T0V(GA_COLOR_CONTROL_PS3, 0x00000000);
T0V(SU_TEX_WRAP_PS3, 0x00000000);
T0V(VAP_PVS_STATE_FLUSH_REG, 0x00000000);
T0V(VAP_PVS_VTX_TIMEOUT_REG
, VAP_PVS_VTX_TIMEOUT_REG__CLK_COUNT(0xffff)
);
T0Vf(VAP_GB_VERT_CLIP_ADJ, 1.0f);
T0Vf(VAP_GB_VERT_DISC_ADJ, 1.0f);
T0Vf(VAP_GB_HORZ_CLIP_ADJ, 1.0f);
T0Vf(VAP_GB_HORZ_DISC_ADJ, 1.0f);
T0V(VAP_PSC_SGN_NORM_CNTL
, VAP_PSC_SGN_NORM_CNTL__SGN_NORM_METHOD_0(2)
| VAP_PSC_SGN_NORM_CNTL__SGN_NORM_METHOD_1(2)
| VAP_PSC_SGN_NORM_CNTL__SGN_NORM_METHOD_2(2)
| VAP_PSC_SGN_NORM_CNTL__SGN_NORM_METHOD_3(2)
| VAP_PSC_SGN_NORM_CNTL__SGN_NORM_METHOD_4(2)
| VAP_PSC_SGN_NORM_CNTL__SGN_NORM_METHOD_5(2)
| VAP_PSC_SGN_NORM_CNTL__SGN_NORM_METHOD_6(2)
| VAP_PSC_SGN_NORM_CNTL__SGN_NORM_METHOD_7(2)
| VAP_PSC_SGN_NORM_CNTL__SGN_NORM_METHOD_8(2)
| VAP_PSC_SGN_NORM_CNTL__SGN_NORM_METHOD_9(2)
| VAP_PSC_SGN_NORM_CNTL__SGN_NORM_METHOD_10(2)
| VAP_PSC_SGN_NORM_CNTL__SGN_NORM_METHOD_11(2)
| VAP_PSC_SGN_NORM_CNTL__SGN_NORM_METHOD_12(2)
| VAP_PSC_SGN_NORM_CNTL__SGN_NORM_METHOD_13(2)
| VAP_PSC_SGN_NORM_CNTL__SGN_NORM_METHOD_14(2)
| VAP_PSC_SGN_NORM_CNTL__SGN_NORM_METHOD_15(2)
);
T0V(VAP_TEX_TO_COLOR_CNTL, 0x00000000);
T0V(VAP_CNTL
, VAP_CNTL__PVS_NUM_SLOTS(10)
| VAP_CNTL__PVS_NUM_CNTLRS(5)
| VAP_CNTL__PVS_NUM_FPUS(5)
| VAP_CNTL__VAP_NO_RENDER(0)
| VAP_CNTL__VF_MAX_VTX_NUM(12)
| VAP_CNTL__DX_CLIP_SPACE_DEF(0)
| VAP_CNTL__TCL_STATE_OPTIMIZATION(1)
);
T0V(VAP_PVS_FLOW_CNTL_OPC, 0x00000000);
T0(VAP_PVS_FLOW_CNTL_ADDRS_LW_0, 31);
for (int i = 0; i < 32; i++)
ib[ix++].u32 = 0x00000000;
T0(VAP_PVS_FLOW_CNTL_LOOP_INDEX_0, 15);
for (int i = 0; i < 16; i++)
ib[ix++].u32 = 0x00000000;
T0V(VAP_PVS_VECTOR_INDX_REG
, VAP_PVS_VECTOR_INDX_REG__OCTWORD_OFFSET(1536));
T0_ONE_REG(VAP_PVS_VECTOR_DATA_REG_128, 23);
for (int i = 0; i < 24; i++)
ib[ix++].u32 = 0x00000000;
T0V(VAP_VTX_STATE_CNTL
, VAP_VTX_STATE_CNTL__COLOR_0_ASSEMBLY_CNTL(1)
| VAP_VTX_STATE_CNTL__COLOR_1_ASSEMBLY_CNTL(1)
| VAP_VTX_STATE_CNTL__COLOR_2_ASSEMBLY_CNTL(1)
| VAP_VTX_STATE_CNTL__COLOR_3_ASSEMBLY_CNTL(1)
| VAP_VTX_STATE_CNTL__COLOR_4_ASSEMBLY_CNTL(1)
| VAP_VTX_STATE_CNTL__COLOR_5_ASSEMBLY_CNTL(1)
| VAP_VTX_STATE_CNTL__COLOR_6_ASSEMBLY_CNTL(1)
| VAP_VTX_STATE_CNTL__COLOR_7_ASSEMBLY_CNTL(1)
| VAP_VTX_STATE_CNTL__UPDATE_USER_COLOR_0_ENA(0)
);
T0V(GB_ENABLE, 0x00000000);
T0V(GA_POINT_SIZE
, GA_POINT_SIZE__HEIGHT(7200)
| GA_POINT_SIZE__WIDTH(9600)
);
T0V(GA_POINT_MINMAX
, GA_POINT_MINMAX__MIN_SIZE(60)
| GA_POINT_MINMAX__MAX_SIZE(60)
);
T0V(GA_LINE_CNTL
, GA_LINE_CNTL__WIDTH(6)
| GA_LINE_CNTL__END_TYPE(2)
| GA_LINE_CNTL__SORT(0)
);
T0V(SU_POLY_OFFSET_ENABLE, 0x00000000);
T0V(SU_CULL_MODE, 0x00000000);
T0V(GA_LINE_STIPPLE_CONFIG, 0x00000000);
T0V(GA_LINE_STIPPLE_VALUE, 0x00000000);
T0V(GA_POLY_MODE, 0x00000000);
T0V(GA_ROUND_MODE
, GA_ROUND_MODE__GEOMETRY_ROUND(1)
| GA_ROUND_MODE__COLOR_ROUND(0)
| GA_ROUND_MODE__RGB_CLAMP(1)
| GA_ROUND_MODE__ALPHA_CLAMP(1)
| GA_ROUND_MODE__GEOMETRY_MASK(0)
);
T0V(SC_CLIP_RULE
, SC_CLIP_RULE__CLIP_RULE(0xffff));
T0Vf(GA_POINT_S0, 0.0f);
T0Vf(GA_POINT_T0, 1.0f);
T0Vf(GA_POINT_S1, 1.0f);
T0Vf(GA_POINT_T1, 0.0f);
T0V(US_OUT_FMT_0
, US_OUT_FMT__OUT_FMT(0) // C4_8
| US_OUT_FMT__C0_SEL(3) // Blue
| US_OUT_FMT__C1_SEL(2) // Green
| US_OUT_FMT__C2_SEL(1) // Red
| US_OUT_FMT__C3_SEL(0) // Alpha
| US_OUT_FMT__OUT_SIGN(0)
);
T0V(US_OUT_FMT_1
, US_OUT_FMT__OUT_FMT(15) // render target is not used
);
T0V(US_OUT_FMT_2
, US_OUT_FMT__OUT_FMT(15) // render target is not used
);
T0V(US_OUT_FMT_2
, US_OUT_FMT__OUT_FMT(15) // render target is not used
);
T0V(GB_MSPOS0
, GB_MSPOS0__MS_X0(6)
| GB_MSPOS0__MS_Y0(6)
| GB_MSPOS0__MS_X1(6)
| GB_MSPOS0__MS_Y1(6)
| GB_MSPOS0__MS_X2(6)
| GB_MSPOS0__MS_Y2(6)
| GB_MSPOS0__MSBD0_Y(6)
| GB_MSPOS0__MSBD0_X(6)
);
T0V(GB_MSPOS1
, GB_MSPOS1__MS_X3(6)
| GB_MSPOS1__MS_Y3(6)
| GB_MSPOS1__MS_X4(6)
| GB_MSPOS1__MS_Y4(6)
| GB_MSPOS1__MS_X5(6)
| GB_MSPOS1__MS_Y5(6)
| GB_MSPOS1__MSBD1(6)
);
T0V(US_CONFIG
, US_CONFIG__ZERO_TIMES_ANYTHING_EQUALS_ZERO(1)
);
T0V(US_PIXSIZE
, US_PIXSIZE__PIX_SIZE(1)
);
T0V(US_FC_CTRL, 0);
T0V(FG_DEPTH_SRC, 0x00000000);
T0V(US_W_FMT, 0x00000000);
T0V(GA_COLOR_CONTROL
, GA_COLOR_CONTROL__RGB0_SHADING(2)
| GA_COLOR_CONTROL__ALPHA0_SHADING(2)
| GA_COLOR_CONTROL__RGB1_SHADING(2)
| GA_COLOR_CONTROL__ALPHA1_SHADING(2)
| GA_COLOR_CONTROL__RGB2_SHADING(2)
| GA_COLOR_CONTROL__ALPHA2_SHADING(2)
| GA_COLOR_CONTROL__RGB3_SHADING(2)
| GA_COLOR_CONTROL__ALPHA3_SHADING(2)
| GA_COLOR_CONTROL__PROVOKING_VERTEX(3)
);
//////////////////////////////////////////////////////////////////////////////
// CB
//////////////////////////////////////////////////////////////////////////////
T0V(RB3D_COLOROFFSET0
, 0x00000000 // value replaced by kernel from relocs
);
T3(_NOP, 0);
ib[ix++].u32 = 0 * 4; // index into relocs array
T0V(RB3D_COLORPITCH0
, RB3D_COLORPITCH__COLORPITCH(1600 >> 1)
| RB3D_COLORPITCH__COLORFORMAT(6) // ARGB8888
);
// The COLORPITCH NOP is ignored/not applied due to
// RADEON_CS_KEEP_TILING_FLAGS, but is still required.
T3(_NOP, 0);
ib[ix++].u32 = 0 * 4; // index into relocs array
//////////////////////////////////////////////////////////////////////////////
// SC
//////////////////////////////////////////////////////////////////////////////
T0V(SC_SCISSOR0
, SC_SCISSOR0__XS0(0)
| SC_SCISSOR0__YS0(0)
);
T0V(SC_SCISSOR1
, SC_SCISSOR1__XS1(1600 - 1)
| SC_SCISSOR1__YS1(1200 - 1)
);
//////////////////////////////////////////////////////////////////////////////
// VAP
//////////////////////////////////////////////////////////////////////////////
T0Vf(VAP_VPORT_XSCALE, 600.0f);
T0Vf(VAP_VPORT_XOFFSET, 800.0f);
T0Vf(VAP_VPORT_YSCALE, -600.0f);
T0Vf(VAP_VPORT_YOFFSET, 600.0f);
T0Vf(VAP_VPORT_ZSCALE, 0.5f);
T0Vf(VAP_VPORT_ZOFFSET, 0.5f);
T0V(VAP_VSM_VTX_ASSM
, 0x00000401); // undocumented
//////////////////////////////////////////////////////////////////////////////
// VAP_PVS
//////////////////////////////////////////////////////////////////////////////
printf("vs length %d\n", vertex_shader_length);
assert(vertex_shader_length % 4 == 0);
printf("vs instructions %d\n", vertex_shader_instructions);
T0V(VAP_PVS_VECTOR_INDX_REG
, VAP_PVS_VECTOR_INDX_REG__OCTWORD_OFFSET(0)
);
T0_ONE_REG(VAP_PVS_VECTOR_DATA_REG_128, vertex_shader_length - 1);
for (int i = 0; i < vertex_shader_length; i++) {
ib[ix++].u32 = vertex_shader[i];
}
//////////////////////////////////////////////////////////////////////////////
// GA_US
//////////////////////////////////////////////////////////////////////////////
printf("fs length %d\n", fragment_shader_length);
assert(fragment_shader_length % 6 == 0);
printf("fs instructions %d\n", fragment_shader_instructions);
T0V(GA_US_VECTOR_INDEX, 0x00000000);
T0_ONE_REG(GA_US_VECTOR_DATA, fragment_shader_length - 1);
for (int i = 0; i < fragment_shader_length; i++) {
ib[ix++].u32 = fragment_shader[i];
}
//////////////////////////////////////////////////////////////////////////////
// DRAW
//////////////////////////////////////////////////////////////////////////////
ix = _3d_clear(ix);
ix = _3d_cube(ix, theta);
//////////////////////////////////////////////////////////////////////////////
// padding
//////////////////////////////////////////////////////////////////////////////
while ((ix % 8) != 0) {
ib[ix++].u32 = 0x80000000;
}
return ix;
}
int create_colorbuffer(int fd, int colorbuffer_size)
{
int ret;
struct drm_radeon_gem_create args = {
.size = colorbuffer_size,
.alignment = 4096,
.handle = 0,
.initial_domain = 4, // RADEON_GEM_DOMAIN_VRAM
.flags = 4
};
ret = drmCommandWriteRead(fd, DRM_RADEON_GEM_CREATE, &args, (sizeof (struct drm_radeon_gem_create)));
if (ret != 0) {
perror("drmCommandWriteRead(DRM_RADEON_GEM_CREATE)");
}
assert(args.handle != 0);
struct drm_radeon_gem_mmap mmap_args = {
.handle = args.handle,
.offset = 0,
.size = colorbuffer_size,
};
ret = drmCommandWriteRead(fd, DRM_RADEON_GEM_MMAP, &mmap_args, (sizeof (struct drm_radeon_gem_mmap)));
if (ret != 0) {
perror("drmCommandWriteRead(DRM_RADEON_GEM_MMAP)");
}
void * ptr = mmap(0,
colorbuffer_size,
PROT_READ | PROT_WRITE,
MAP_SHARED,
fd,
mmap_args.addr_ptr);
assert(ptr != MAP_FAILED);
// clear colorbuffer
for (int i = 0; i < colorbuffer_size / 4; i++) {
((uint32_t*)ptr)[i] = 0x00000000;
}
asm volatile ("" ::: "memory");
munmap(ptr, colorbuffer_size);
return args.handle;
}
int main()
{
//////////////////////////////////////////////////////////////////////////////
// PCI resource0
//////////////////////////////////////////////////////////////////////////////
const char * resource2_path = "/sys/bus/pci/devices/0000:01:00.0/resource2";
int resource2_fd = open(resource2_path, O_RDWR | O_SYNC);
assert(resource2_fd >= 0);
uint32_t resource2_size = 0x10000;
void * resource2_base = mmap(0, resource2_size, PROT_READ | PROT_WRITE, MAP_SHARED, resource2_fd, 0);
assert(resource2_base != MAP_FAILED);
void * rmmio = resource2_base;
//////////////////////////////////////////////////////////////////////////////
// DRI card0
//////////////////////////////////////////////////////////////////////////////
int ret;
int fd = open("/dev/dri/card0", O_RDWR | O_CLOEXEC);
const int colorbuffer_size = 1600 * 1200 * 4;
int colorbuffer_handle[2];
int zbuffer_handle;
int texturebuffer_handle;
int flush_handle;
// colorbuffer
colorbuffer_handle[0] = create_colorbuffer(fd, colorbuffer_size);
colorbuffer_handle[1] = create_colorbuffer(fd, colorbuffer_size);
zbuffer_handle = create_colorbuffer(fd, colorbuffer_size);
fprintf(stderr, "colorbuffer handle[0] %d\n", colorbuffer_handle[0]);
fprintf(stderr, "colorbuffer handle[1] %d\n", colorbuffer_handle[1]);
fprintf(stderr, "zbuffer handle %d\n", zbuffer_handle);
// texture
{
const int texture_size = 1024 * 1024 * 4;
struct drm_radeon_gem_create args = {
.size = texture_size,
.alignment = 4096,
.handle = 0,
.initial_domain = 4, // RADEON_GEM_DOMAIN_VRAM
.flags = 4
};
ret = drmCommandWriteRead(fd, DRM_RADEON_GEM_CREATE, &args, (sizeof (struct drm_radeon_gem_create)));
if (ret != 0) {
perror("drmCommandWriteRead(DRM_RADEON_GEM_CREATE)");
}
assert(args.handle != 0);
texturebuffer_handle = args.handle;
struct drm_radeon_gem_mmap mmap_args = {
.handle = texturebuffer_handle,
.offset = 0,
.size = texture_size,
};
ret = drmCommandWriteRead(fd, DRM_RADEON_GEM_MMAP, &mmap_args, (sizeof (struct drm_radeon_gem_mmap)));
if (ret != 0) {
perror("drmCommandWriteRead(DRM_RADEON_GEM_MMAP)");
}
void * texturebuffer_ptr = mmap(0, mmap_args.size, PROT_READ|PROT_WRITE, MAP_SHARED,
fd, mmap_args.addr_ptr);
assert(texturebuffer_ptr != MAP_FAILED);
// copy texture
void * texture_buf = read_file("../texture/butterfly_1024x1024_argb8888.data");
assert(texture_buf != NULL);
for (int i = 0; i < texture_size / 4; i++) {
((uint32_t*)texturebuffer_ptr)[i] = ((uint32_t*)texture_buf)[i];
}
asm volatile ("" ::: "memory");
free(texture_buf);
munmap(texturebuffer_ptr, texture_size);
}
// flush
{
struct drm_radeon_gem_create args = {
.size = 4096,
.alignment = 4096,
.handle = 0,
.initial_domain = 2, // GTT
.flags = 0
};
ret = drmCommandWriteRead(fd, DRM_RADEON_GEM_CREATE,
&args, (sizeof (args)));
if (ret != 0) {
perror("drmCommandWriteRead(DRM_RADEON_GEM_CREATE)");
}
assert(args.handle != 0);
flush_handle = args.handle;
}
uint32_t flags[2] = {
5, // RADEON_CS_KEEP_TILING_FLAGS | RADEON_CS_END_OF_FRAME
0, // RADEON_CS_RING_GFX
};
int ib_dwords = indirect_buffer(0);
int colorbuffer_ix = 0;
float theta = 0;
while (true) {
struct drm_radeon_cs_reloc relocs[] = {
{
.handle = colorbuffer_handle[colorbuffer_ix],
.read_domains = 4, // RADEON_GEM_DOMAIN_VRAM
.write_domain = 4, // RADEON_GEM_DOMAIN_VRAM
.flags = 8,
},
{
.handle = zbuffer_handle,
.read_domains = 4, // RADEON_GEM_DOMAIN_VRAM
.write_domain = 4, // RADEON_GEM_DOMAIN_VRAM
.flags = 8,
},
{
.handle = texturebuffer_handle,
.read_domains = 4, // RADEON_GEM_DOMAIN_VRAM
.write_domain = 4, // RADEON_GEM_DOMAIN_VRAM
.flags = 8,
},
{
.handle = flush_handle,
.read_domains = 2, // RADEON_GEM_DOMAIN_GTT
.write_domain = 2, // RADEON_GEM_DOMAIN_GTT
.flags = 0,
}
};
struct drm_radeon_cs_chunk chunks[3] = {
{
.chunk_id = RADEON_CHUNK_ID_IB,
.length_dw = ib_dwords,
.chunk_data = (uint64_t)(uintptr_t)ib,
},
{
.chunk_id = RADEON_CHUNK_ID_RELOCS,
.length_dw = (sizeof (relocs)) / (sizeof (uint32_t)),
.chunk_data = (uint64_t)(uintptr_t)relocs,
},
{
.chunk_id = RADEON_CHUNK_ID_FLAGS,
.length_dw = (sizeof (flags)) / (sizeof (uint32_t)),
.chunk_data = (uint64_t)(uintptr_t)&flags,
},
};
uint64_t chunks_array[3] = {
(uint64_t)(uintptr_t)&chunks[0],
(uint64_t)(uintptr_t)&chunks[1],
(uint64_t)(uintptr_t)&chunks[2],
};
struct drm_radeon_cs cs = {
.num_chunks = 3,
.cs_id = 0,
.chunks = (uint64_t)(uintptr_t)chunks_array,
.gart_limit = 0,
.vram_limit = 0,
};
ret = drmCommandWriteRead(fd, DRM_RADEON_CS, &cs, (sizeof (struct drm_radeon_cs)));
if (ret != 0) {
perror("drmCommandWriteRead(DRM_RADEON_CS)");
}
/*
struct drm_radeon_gem_wait_idle args = {
.handle = flush_handle
};
while (drmCommandWrite(fd, DRM_RADEON_GEM_WAIT_IDLE, &args, (sizeof (struct drm_radeon_gem_wait_idle))) == -EBUSY);
*/
#define D1CRTC_DOUBLE_BUFFER_CONTROL 0x60ec
#define D1GRPH_PRIMARY_SURFACE_ADDRESS 0x6110
#define D1GRPH_UPDATE 0x6144
#define D1GRPH_UPDATE__D1GRPH_SURFACE_UPDATE_PENDING (1 << 2)
uint32_t d1crtc_double_buffer_control = rreg(rmmio, D1CRTC_DOUBLE_BUFFER_CONTROL);
printf("D1CRTC_DOUBLE_BUFFER_CONTROL: %08x\n", d1crtc_double_buffer_control);
assert(d1crtc_double_buffer_control == (1 << 8));
// addresses were retrieved from /sys/kernel/debug/radeon_vram_mm
//
// This assumes GEM buffer allocation always starts from the lowest
// unallocated address.
const uint32_t colorbuffer_addresses[2] = {
0x813000,
0xf66000,
};
wreg(rmmio, D1GRPH_PRIMARY_SURFACE_ADDRESS, colorbuffer_addresses[colorbuffer_ix]);
while ((rreg(rmmio, D1GRPH_UPDATE) & D1GRPH_UPDATE__D1GRPH_SURFACE_UPDATE_PENDING) != 0);
// next state
theta += 0.01f;
colorbuffer_ix = (colorbuffer_ix + 1) & 1;
// next indirect buffer
ib_dwords = indirect_buffer(theta);
}
/*
int out_fd = open("colorbuffer.data", O_RDWR|O_CREAT);
assert(out_fd >= 0);
ssize_t write_length = write(out_fd, colorbuffer_ptr, colorbuffer_size);
assert(write_length == colorbuffer_size);
close(out_fd);
int mm_fd = open("/sys/kernel/debug/radeon_vram_mm", O_RDONLY);
assert(mm_fd >= 0);
char buf[4096];
while (true) {
ssize_t read_length = read(mm_fd, buf, 4096);
assert(read_length >= 0);
write(STDOUT_FILENO, buf, read_length);
if (read_length < 4096) {
break;
}
}
close(mm_fd);
*/
close(fd);
}