#include #include "vdp2.h" #include "vdp1.h" #include "scu.h" #include "smpc.h" #include "sh2.h" #include "common/copy.hpp" #include "common/vdp2_func.hpp" #include "common/intback.hpp" #include "input.hpp" #include "vram.hpp" #include "font.hpp" #include "gen/maps.hpp" #include "gen/sprites.hpp" #include "map_objects.hpp" #include "coordinates.hpp" #include "render_map.hpp" #include "actor.hpp" #include "ledge_tiles.hpp" #include "graphic.hpp" struct draw_t { struct { uint16_t font; // div 32 uint16_t tilesets[tileset_t::count]; // div 32 uint16_t spritesheets[spritesheet_t::count]; // div 128 } base_pattern; }; struct state_t { enum map_t::map map; enum map_t::map last_map; draw_t draw; actor_t player; }; static state_t state = { map_t::pallet_town, map_t::last_map, 0 }; uint32_t load_tileset(uint32_t top, enum tileset_t::tileset tileset) { uint32_t base_address = top = cell_data(tilesets[tileset].tileset, top); state.draw.base_pattern.tilesets[tileset] = base_address / 32; return top; } uint32_t load_sprite(uint32_t top, enum spritesheet_t::spritesheet spritesheet) { const spritesheet_t& s = spritesheets[spritesheet]; uint32_t base_address = top = character_pattern_table(s.spritesheet, top); state.draw.base_pattern.spritesheets[spritesheet] = base_address / 128; return top; } void load_vram() { vdp2.reg.CYCA0 = 0xeeee'eeee; vdp2.reg.CYCA1 = 0xeeee'eeee; vdp2.reg.CYCB0 = 0xeeee'eeee; vdp2.reg.CYCB1 = 0xeeee'eeee; uint32_t vdp2_top = (sizeof (union vdp2_vram)); vdp2_top = load_font(vdp2_top); state.draw.base_pattern.font = vdp2_top / 32; for (uint32_t i = 0; i < tileset_t::count; i++) vdp2_top = load_tileset(vdp2_top, static_cast(i)); vdp2.reg.CYCA0 = 0x01ff'ffff; vdp2.reg.CYCA1 = 0x01ff'ffff; vdp2.reg.CYCB0 = 0x45ff'ffff; vdp2.reg.CYCB1 = 0x45ff'ffff; uint32_t vdp1_top = (sizeof (union vdp1_vram)); for (uint32_t i = 0; i < spritesheet_t::count; i++) vdp1_top = load_sprite(vdp1_top, static_cast(i)); } static inline uint32_t facing_offset(const actor_t::direction facing) { switch (facing) { default: [[fallthrough]]; case actor_t::down: return 0; case actor_t::up: return 1; case actor_t::left: return 2; case actor_t::right: return 2; } } static inline uint32_t facing_inverted(const actor_t::direction facing, const uint32_t animation_cycle) { switch (facing) { default: [[fallthrough]]; case actor_t::down: [[fallthrough]]; case actor_t::up: return (animation_cycle & 1) ? CTRL__DIR__INVERTED_HORIZONTALLY : CTRL__DIR__NOT_INVERTED; case actor_t::left: return CTRL__DIR__NOT_INVERTED; case actor_t::right: return CTRL__DIR__INVERTED_HORIZONTALLY; } } void render_sprite(const uint32_t ix, const uint32_t sprite_id, const enum actor_t::direction facing, const uint32_t animation_frame, const uint32_t animation_cycle, const screen_t& screen, const offset_t& offset, int32_t y_offset) { constexpr uint32_t color_address = 16; const uint32_t sprite_offset = facing_offset(facing) + animation_frame; const uint32_t base_pattern = state.draw.base_pattern.spritesheets[sprite_id]; const uint32_t character_address = ((base_pattern + sprite_offset) * 128) / 8; vdp1.vram.cmd[ix].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__NORMAL_SPRITE | facing_inverted(facing, animation_cycle); vdp1.vram.cmd[ix].LINK = 0; // The "end code" is 0xf, which is being used in the mai sprite palette. If // both transparency and end codes are enabled, it seems there are only 14 // usable colors in the 4-bit color mode. vdp1.vram.cmd[ix].PMOD = PMOD__ECD | PMOD__COLOR_MODE__COLOR_BANK_16; // It appears Kronos does not correctly calculate the color address in the // VDP1 debugger. Kronos will report FFFC when the actual color table address // in this example is 7FFE0. vdp1.vram.cmd[ix].COLR = color_address; // non-palettized (rgb15) color data vdp1.vram.cmd[ix].SRCA = character_address; vdp1.vram.cmd[ix].SIZE = SIZE__X(16) | SIZE__Y(16); vdp1.vram.cmd[ix].XA = (cell_offset::x * 8) + screen.x * 16 - offset.x; vdp1.vram.cmd[ix].YA = (cell_offset::y * 8) + screen.y * 16 + y_offset - offset.y; } void render_sprites(const offset_t& offset) { uint32_t ix = 2; const uint32_t animation_frame = ((state.player.frame & 0b1000) != 0) * 3; render_sprite(ix, spritesheet_t::red, state.player.facing, animation_frame, state.player.cycle, {4, 4}, {0, 0}, state.player.y_offset()); ix++; const object_t& obj = map_objects[state.map]; for (uint32_t i = 0; i < obj.object_length; i++) { const object_event_t& event = obj.object_events[i]; const world_t world = { event.position.x, event.position.y }; render_sprite(ix, event.sprite_id, actor_t::down, 0, 0, world.to_screen(state.player.world), offset, -4); ix++; } constexpr uint16_t top_x = 80 - 1; constexpr uint16_t top_y = 48 - 1; constexpr uint16_t bot_x = 239 + 1; constexpr uint16_t bot_y = 191 + 1; vdp1.vram.cmd[ix].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__POLYLINE; vdp1.vram.cmd[ix].LINK = 0; // "Set [ECD] to '1' for polygons, polylines, and lines" // "Be sure to set [SPD] to '1' for polygons, polylines, and lines" // // The "user clip mode" bit is not set in PMOD here, so setting "user clip // coordinates" has no effect on this draw command. However, "system clip // coordinates" and "local coordinates" are always applied, and must be set to // reasonable values. vdp1.vram.cmd[ix].PMOD = PMOD__ECD | PMOD__SPD; vdp1.vram.cmd[ix].COLR = COLR__RGB | rgb15(255, 0, 255); vdp1.vram.cmd[ix].XA = top_x; vdp1.vram.cmd[ix].YA = top_y; vdp1.vram.cmd[ix].XB = bot_x; vdp1.vram.cmd[ix].YB = top_y; vdp1.vram.cmd[ix].XC = bot_x; vdp1.vram.cmd[ix].YC = bot_y; vdp1.vram.cmd[ix].XD = top_x; vdp1.vram.cmd[ix].YD = bot_y; ix++; vdp1.vram.cmd[ix].CTRL = CTRL__END; } void render_map() { const map_t& map = maps[state.map]; const uint32_t base_pattern = state.draw.base_pattern.tilesets[map.tileset]; vdp2.reg.PNCN0 = PNCN0__N0PNB__1WORD | PNCN0__N0CNSM | PNCN0__N0SCN((base_pattern >> 10) & 0x1f); for (int32_t y = (0 - 1); y < (9 + 2); y++) { for (int32_t x = (0 - 2); x < (10 + 2); x++) { render_screen(base_pattern, map, state.player.world, {x, y} ); } } vdp2.reg.BGON = BGON__N0ON | BGON__N0TPON | BGON__N1ON; } constexpr inline world_t direction_offset(const world_t& world, const enum actor_t::direction dir) { switch (dir) { default: [[fallthrough]]; case actor_t::up: return {world.x , world.y - 1}; case actor_t::down: return {world.x , world.y + 1}; case actor_t::left: return {world.x - 1, world.y }; case actor_t::right: return {world.x + 1, world.y }; } } constexpr inline uint8_t get_tile_ix(const map_t& map, const world_t& coord) { // keep this synchronized with render_screen() const uint8_t block_ix = get_block(map, coord.to_block()); const tileset_t& tileset = tilesets[map.tileset]; const uint8_t * block_start = &(tileset.blockset.start)[block_ix * 4 * 4]; const int32_t quadrant_x = 2 * (coord.x & 1); const int32_t quadrant_y = 2 * (coord.y & 1); const int32_t block_row = 4 * (quadrant_y + 1); const uint8_t tile_ix = block_start[block_row + quadrant_x]; return tile_ix; } constexpr inline enum actor_t::collision collision(const map_t& map, const world_t& world, enum actor_t::direction direction) { const world_t coord = direction_offset(world, direction); uint8_t collision_tile_ix = get_tile_ix(map, coord); const tileset_t& tileset = tilesets[map.tileset]; for (uint32_t i = 0; i < tileset.collision.size; i++) { if (tileset.collision.start[i] == collision_tile_ix) return actor_t::passable; } // check ledge_tile pairs uint8_t actor_tile_ix = get_tile_ix(map, world); for (uint32_t i = 0; i < ledge_tiles_length; i++) { const ledge_tile_t& lt = ledge_tiles[i]; if (direction == lt.direction && actor_tile_ix == lt.actor && collision_tile_ix == lt.collision) { return actor_t::jump; } } return actor_t::impassable; } constexpr inline void collision_move(const map_t& map, actor_t::direction dir) { const enum actor_t::collision c = collision(map, state.player.world, dir); state.player.move(c, dir); } void change_maps() { const map_t& map = maps[state.map]; #define _has(_dir_) (map.connections[map_t::connection_t::_dir_].map != map_t::unconnected) #define _get(_dir_) (maps[map.connections[map_t::connection_t::_dir_].map]) #define _offset(_dir_) (map.connections[map_t::connection_t::_dir_].offset) const block_t block = state.player.world.to_block(); if (block.y < 0) { // north if (_has(north)) { const map_t& north_map = _get(north); state.player.world.y = ((north_map.height + block.y) << 1) | (state.player.world.y & 1); state.player.world.x = ((block.x - _offset(north)) << 1) | (state.player.world.x & 1); state.map = map.connections[map_t::connection_t::north].map; } } else if (block.y >= static_cast(map.height)) { // south if (_has(south)) { state.player.world.y = ((block.y - map.height) << 1) | (state.player.world.y & 1); state.player.world.x = ((block.x - _offset(south)) << 1) | (state.player.world.x & 1); state.map = map.connections[map_t::connection_t::south].map; } } else if (block.x < 0) { // west if (_has(west)) { const map_t& west_map = _get(west); state.player.world.x = ((west_map.width + block.x) << 1) | (state.player.world.x & 1); state.player.world.y = ((block.y - _offset(west)) << 1) | (state.player.world.y & 1); state.map = map.connections[map_t::connection_t::west].map; } } else if (block.x >= static_cast(map.width)) { // east if (_has(east)) { state.player.world.x = ((block.x - map.width) << 1) | (state.player.world.x & 1); state.player.world.y = ((block.y - _offset(east)) << 1) | (state.player.world.y & 1); state.map = map.connections[map_t::connection_t::east].map; } } #undef _offset #undef _get #undef _has } constexpr inline bool is_outside(const enum map_t::map& map_id) { const map_t& map = maps[map_id]; switch (map.tileset) { case tileset_t::overworld: [[fallthrough]]; case tileset_t::plateau: return true; default: return false; } } struct collision_direction_t { enum actor_t::collision collision; enum actor_t::direction direction; }; constexpr inline collision_direction_t find_direction(const map_t& map, const world_t& world, const enum actor_t::direction facing) { // first, try `facing`, as this is typically correct in non- edge-cases const enum actor_t::collision c_facing = collision(map, world, facing); if (c_facing != actor_t::impassable) return {c_facing, facing}; // otherwise try all other directions // (this checks facing a second time for no reason) constexpr enum actor_t::direction dirs[] = {actor_t::up, actor_t::down, actor_t::left, actor_t::right}; for (const enum actor_t::direction& dir : dirs) { const enum actor_t::collision c = collision(map, world, dir); if (c != actor_t::impassable) return {c, dir}; } return {actor_t::impassable, facing}; } void update_warp() { if (state.player.moving) return; world_t& coord = state.player.world; for (uint32_t j = 0; j < map_objects[state.map].warp_length; j++) { const warp_event_t& warp = map_objects[state.map].warp_events[j]; if (coord.x == warp.position.x && coord.y == warp.position.y) { if (warp.destination.map == map_t::last_map) { if (state.last_map == map_t::last_map) { // use last_map as a sentinel value for "the player hasn't // warped yet". This should never happen in normal gameplay. continue; } state.map = state.last_map; } else { // Only change last_map if the current map is an "outside" // map. Warps that use last_map are designed to be used this // way. if (is_outside(state.map)) state.last_map = state.map; state.map = warp.destination.map; } // warp_index starts at 1 const warp_event_t& dest = map_objects[state.map].warp_events[warp.destination.warp_index - 1]; coord.x = dest.position.x; coord.y = dest.position.y; // force the player to move off of the warp const collision_direction_t c_d = find_direction(maps[state.map], state.player.world, state.player.facing); state.player.move(c_d.collision, c_d.direction); // must return: because map state.map changed, the rest of this // loop is invalid return; } } } void update() { state.player.tick(); change_maps(); update_warp(); if (event::cursor_left() ) collision_move(maps[state.map], actor_t::left); else if (event::cursor_right()) collision_move(maps[state.map], actor_t::right); else if (event::cursor_up() ) collision_move(maps[state.map], actor_t::up); else if (event::cursor_down() ) collision_move(maps[state.map], actor_t::down); } void render() { const offset_t offset = state.player.offset(); render_sprites(offset); vdp1.reg.PTMR = PTMR__PTM__NOW; vdp2.reg.SCXIN0 = offset.x; vdp2.reg.SCXDN0 = 0; vdp2.reg.SCYIN0 = offset.y; vdp2.reg.SCYDN0 = 0; render_map(); } extern "C" void v_blank_in_int(void) __attribute__ ((interrupt_handler)); void v_blank_in_int() { scu.reg.IST &= ~(IST__V_BLANK_IN); scu.reg.IMS = ~(IMS__SMPC | IMS__V_BLANK_IN); sh2.reg.FRC.H = 0; sh2.reg.FRC.L = 0; sh2.reg.FTCSR = 0; // clear flags render(); update(); // wait at least 300us, as specified in the SMPC manual. // It appears reading FRC.H is mandatory and *must* occur before FRC.L on real // hardware. while ((sh2.reg.FTCSR & FTCSR__OVF) == 0 && sh2.reg.FRC.H == 0 && sh2.reg.FRC.L < 63); // on real hardware, SF contains uninitialized garbage bits other than the // lsb. while ((smpc.reg.SF & 1) != 0); smpc.reg.SF = 0; smpc.reg.IREG[0].val = INTBACK__IREG0__STATUS_DISABLE; smpc.reg.IREG[1].val = ( INTBACK__IREG1__PERIPHERAL_DATA_ENABLE | INTBACK__IREG1__PORT2_15BYTE | INTBACK__IREG1__PORT1_15BYTE ); smpc.reg.IREG[2].val = INTBACK__IREG2__MAGIC; smpc.reg.COMREG = COMREG__INTBACK; } extern "C" void smpc_int(void) __attribute__ ((interrupt_handler)); void smpc_int(void) { scu.reg.IST &= ~(IST__SMPC); scu.reg.IMS = ~(IMS__SMPC | IMS__V_BLANK_IN); intback::fsm(digital_callback, nullptr); } void init_vdp1() { /* TVM settings must be performed from the second H-blank IN interrupt after the V-blank IN interrupt to the H-blank IN interrupt immediately after the V-blank OUT interrupt. */ // "normal" display resolution, 16 bits per pixel, 512x256 framebuffer vdp1.reg.TVMR = TVMR__TVM__NORMAL; // swap framebuffers every 1 cycle; non-interlace vdp1.reg.FBCR = 0; // during a framebuffer erase cycle, write the color "black" to each pixel constexpr uint16_t black = 0x0000; vdp1.reg.EWDR = black; // the EWLR/EWRR macros use somewhat nontrivial math for the X coordinates // erase upper-left coordinate vdp1.reg.EWLR = EWLR__16BPP_X1(0) | EWLR__Y1(0); // erase lower-right coordinate vdp1.reg.EWRR = EWRR__16BPP_X3(319) | EWRR__Y3(239); vdp1.vram.cmd[0].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__SYSTEM_CLIP_COORDINATES; vdp1.vram.cmd[0].LINK = 0; vdp1.vram.cmd[0].XC = 319; vdp1.vram.cmd[0].YC = 239; vdp1.vram.cmd[1].CTRL = CTRL__JP__JUMP_NEXT | CTRL__COMM__LOCAL_COORDINATE; vdp1.vram.cmd[1].LINK = 0; vdp1.vram.cmd[1].XA = 0; vdp1.vram.cmd[1].YA = 0; vdp1.vram.cmd[2].CTRL = CTRL__END; // start drawing (execute the command list) on every frame //vdp1.reg.PTMR = PTMR__PTM__FRAME_CHANGE; } void init_vdp2() { vdp2.reg.PRISA = PRISA__S0PRIN(6); // Sprite register 0 PRIority Number vdp2.reg.PRINA = PRINA__N0PRIN(5) | PRINA__N1PRIN(7); // DISP: Please make sure to change this bit from 0 to 1 during V blank. vdp2.reg.TVMD = ( TVMD__DISP | TVMD__LSMD__NON_INTERLACE | TVMD__VRESO__240 | TVMD__HRESO__NORMAL_320); vdp2.reg.EXTEN = 0; /* set the color mode to 5bits per channel, 1024 colors */ vdp2.reg.RAMCTL = RAMCTL__CRKTE | RAMCTL__CRMD__RGB_5BIT_1024;// | RAMCTL__VRAMD | RAMCTL__VRBMD; /* disable display of NBG0 */ vdp2.reg.BGON = 0; /* set character format for NBG0 to palettized 16 color set enable "cell format" for NBG0 set character size for NBG0 to 1x1 cell */ vdp2.reg.CHCTLA = CHCTLA__N0CHCN__16_COLOR | CHCTLA__N0BMEN__CELL_FORMAT | CHCTLA__N0CHSZ__1x1_CELL | CHCTLA__N1CHCN__16_COLOR | CHCTLA__N1BMEN__CELL_FORMAT | CHCTLA__N1CHSZ__1x1_CELL; /* plane size */ vdp2.reg.PLSZ = PLSZ__N0PLSZ__1x1 | PLSZ__N1PLSZ__1x1; /* map plane offset 1-word: value of bit 6-0 * 0x2000 2-word: value of bit 5-0 * 0x4000 */ constexpr int nbg0_plane = 0; constexpr int nbg1_plane = 1; //constexpr int plane_a_offset = plane_a * 0x2000; //constexpr int page_size = 64 * 64 * 2; // N0PNB__1WORD (16-bit) //constexpr int plane_size = page_size * 1; // bits 8~6 vdp2.reg.MPOFN = MPOFN__N0MP(nbg0_plane >> 6) | MPOFN__N1MP(nbg1_plane >> 6); vdp2.reg.MPN0 = MPN0__N0MP(nbg0_plane); vdp2.reg.MPN1 = MPN1__N1MP(nbg1_plane); const uint32_t base_pattern = state.draw.base_pattern.font; vdp2.reg.PNCN1 = PNCN1__N1PNB__1WORD | PNCN1__N1CNSM | PNCN1__N1SCN((base_pattern >> 10) & 0x1f); const uint32_t value = ((base_pattern + 127) & 0xfff) | PATTERN_NAME_TABLE_1WORD__PALETTE(1); fill(&vdp2.vram.u32[0x2000 / 4], value | value << 16, 0x2000); dialog_t::draw(state.draw.base_pattern.font); palette_data(); } void main() { state.map = map_t::pallet_town; //state.map = map_t::viridian_forest; //state.map = map_t::route_2; state.player.world.x = 6; state.player.world.y = 6; load_vram(); v_blank_in(); init_vdp1(); init_vdp2(); constexpr uint16_t top_x = 80 - 1; constexpr uint16_t top_y = 48 - 1; constexpr uint16_t bot_x = 239 + 1; constexpr uint16_t bot_y = 191 + 1; vdp2.reg.WPSX0 = top_x << 1; vdp2.reg.WPSY0 = top_y; vdp2.reg.WPEX0 = bot_x << 1; vdp2.reg.WPEY0 = bot_y; vdp2.reg.WCTLA = WCTLA__N0W0E | WCTLA__N0W0A__OUTSIDE; vdp2.reg.WCTLC = WCTLC__SPW0E | WCTLC__SPW0A__OUTSIDE; // free-running timer sh2.reg.TCR = TCR__CKS__INTERNAL_DIV128; sh2.reg.FTCSR = 0; // initialize smpc smpc.reg.DDR1 = 0; // INPUT smpc.reg.DDR2 = 0; // INPUT smpc.reg.IOSEL = 0; // SMPC control smpc.reg.EXLE = 0; // sh2_vec[SCU_VEC__SMPC] = (u32)(&smpc_int); sh2_vec[SCU_VEC__V_BLANK_IN] = (u32)(&v_blank_in_int); scu.reg.IST = 0; scu.reg.IMS = ~(IMS__SMPC | IMS__V_BLANK_IN); }