dreamcast/example/maple_analog.cpp

236 lines
6.8 KiB
C++

#include <cstdint>
#include <bit>
#include "align.hpp"
#include "vga.hpp"
#include "holly/holly.hpp"
#include "holly/core.hpp"
#include "holly/core_bits.hpp"
#include "holly/ta_fifo_polygon_converter.hpp"
#include "holly/ta_parameter.hpp"
#include "holly/ta_vertex_parameter.hpp"
#include "holly/ta_global_parameter.hpp"
#include "holly/ta_bits.hpp"
#include "holly/isp_tsp.hpp"
#include "holly/region_array.hpp"
#include "holly/background.hpp"
#include "holly/texture_memory_alloc.hpp"
#include "memorymap.hpp"
#include "sh7091/serial.hpp"
#include "geometry/border.hpp"
#include "geometry/circle.hpp"
#include "math/vec4.hpp"
#include "maple/maple.hpp"
#include "maple/maple_impl.hpp"
#include "maple/maple_bus_bits.hpp"
#include "maple/maple_bus_commands.hpp"
#include "maple/maple_bus_ft0.hpp"
uint32_t _command_buf[1024 / 4 + 32];
uint32_t _receive_buf[1024 / 4 + 32];
static ft0::data_transfer::data_format data[4];
void do_get_condition(uint32_t * command_buf,
uint32_t * receive_buf)
{
using command_type = get_condition;
using response_type = data_transfer<ft0::data_transfer::data_format>;
get_condition::data_fields data_fields = {
.function_type = std::byteswap(function_type::controller)
};
maple::init_host_command_all_ports<command_type, response_type>(command_buf, receive_buf,
data_fields);
maple::dma_start(command_buf);
using command_response_type = struct maple::command_response<response_type::data_fields>;
for (uint8_t port = 0; port < 4; port++) {
auto response = reinterpret_cast<command_response_type *>(receive_buf);
auto& bus_data = response[port].bus_data;
if (bus_data.command_code != response_type::command_code) {
return;
}
auto& data_fields = bus_data.data_fields;
if ((data_fields.function_type & std::byteswap(function_type::controller)) == 0) {
return;
}
data[port].analog_axis_3 = data_fields.data.analog_axis_3;
data[port].analog_axis_4 = data_fields.data.analog_axis_4;
}
}
void transform(ta_parameter_writer& parameter,
const vec3 * vertices,
const face_vn& face,
const vec4& color,
const vec3& position,
const float scale
)
{
const uint32_t parameter_control_word = para_control::para_type::polygon_or_modifier_volume
| para_control::list_type::opaque
| obj_control::col_type::floating_color
| obj_control::gouraud;
const uint32_t isp_tsp_instruction_word = isp_tsp_instruction_word::depth_compare_mode::greater
| isp_tsp_instruction_word::culling_mode::cull_if_positive;
const uint32_t tsp_instruction_word = tsp_instruction_word::src_alpha_instr::one
| tsp_instruction_word::dst_alpha_instr::zero
| tsp_instruction_word::fog_control::no_fog;
parameter.append<ta_global_parameter::polygon_type_0>() =
ta_global_parameter::polygon_type_0(parameter_control_word,
isp_tsp_instruction_word,
tsp_instruction_word,
0, // texture_control_word
0, // data_size_for_sort_dma
0 // next_address_for_sort_dma
);
constexpr uint32_t strip_length = 3;
for (uint32_t i = 0; i < strip_length; i++) {
// world transform
uint32_t vertex_ix = face[i].vertex;
auto& vertex = vertices[vertex_ix];
auto point = vertex;
// rotate 90° around the X axis
float x = point.x;
float y = point.z;
float z = point.y;
// world transform
x *= scale; // world space
y *= scale; // world space
z *= 10;
// object transform
x += position.x; // object space
y += position.y; // object space
z += position.z; // object space
// camera transform
z += 1;
//y -= 10;
// screen space transform
x *= 240.f;
y *= 240.f;
x += 320.f;
y += 240.f;
z = 1 / z;
bool end_of_strip = i == strip_length - 1;
parameter.append<ta_vertex_parameter::polygon_type_1>() =
ta_vertex_parameter::polygon_type_1(polygon_vertex_parameter_control_word(end_of_strip),
x, y, z,
color.w, // alpha
color.x, // r
color.y, // g
color.z // b
);
}
}
void init_texture_memory(const struct opb_size& opb_size)
{
auto mem = reinterpret_cast<volatile texture_memory_alloc *>(texture_memory32);
background_parameter(mem->background, 0xff220000);
region_array2(mem->region_array,
(offsetof (struct texture_memory_alloc, object_list)),
640 / 32, // width
480 / 32, // height
opb_size
);
}
uint32_t _ta_parameter_buf[((32 * 8192) + 32) / 4];
void main()
{
uint32_t * command_buf = align_32byte(_command_buf);
uint32_t * receive_buf = align_32byte(_receive_buf);
vga();
// The address of `ta_parameter_buf` must be a multiple of 32 bytes.
// This is mandatory for ch2-dma to the ta fifo polygon converter.
uint32_t * ta_parameter_buf = align_32byte(_ta_parameter_buf);
constexpr uint32_t ta_alloc = ta_alloc_ctrl::pt_opb::no_list
| ta_alloc_ctrl::tm_opb::no_list
| ta_alloc_ctrl::t_opb::no_list
| ta_alloc_ctrl::om_opb::no_list
| ta_alloc_ctrl::o_opb::_16x4byte;
constexpr struct opb_size opb_size = { .opaque = 16 * 4
, .opaque_modifier = 0
, .translucent = 0
, .translucent_modifier = 0
, .punch_through = 0
};
holly.SOFTRESET = softreset::pipeline_soft_reset
| softreset::ta_soft_reset;
holly.SOFTRESET = 0;
core_init();
init_texture_memory(opb_size);
uint32_t frame_ix = 0;
constexpr uint32_t num_frames = 1;
while (1) {
do_get_condition(command_buf, receive_buf);
ta_polygon_converter_init(opb_size.total(),
ta_alloc,
640 / 32,
480 / 32);
float x_pos = static_cast<float>(data[0].analog_axis_3 - 0x80) * (0.5 / 127);
float y_pos = static_cast<float>(data[0].analog_axis_4 - 0x80) * (0.5 / 127);
auto parameter = ta_parameter_writer(ta_parameter_buf);
for (uint32_t i = 0; i < border::num_faces; i++) {
transform(parameter,
border::vertices,
border::faces[i],
{1.0, 0.0, 0.0, 1.0}, // color
{0.0, 0.0, 0.0}, // position
0.5f * (1.f / 0.95f) // scale
);
}
for (uint32_t i = 0; i < circle::num_faces; i++) {
transform(parameter,
circle::vertices,
circle::faces[i],
{0.0, 1.0, 1.0, 1.0}, // color
{x_pos, y_pos, 0.0}, // position
0.05f // scale
);
}
parameter.append<ta_global_parameter::end_of_list>() = ta_global_parameter::end_of_list(para_control::para_type::end_of_list);
ta_polygon_converter_transfer(ta_parameter_buf, parameter.offset);
ta_wait_opaque_list();
core_start_render(frame_ix, num_frames);
v_sync_out();
core_wait_end_of_render_video(frame_ix, num_frames);
frame_ix += 1;
}
}