dreamcast/example/elizabeth.cpp

392 lines
15 KiB
C++

#include <stdint.h>
#include "holly/background.hpp"
#include "holly/core.hpp"
#include "holly/core_bits.hpp"
#include "holly/holly.hpp"
#include "holly/isp_tsp.hpp"
#include "holly/region_array.hpp"
#include "holly/ta_bits.hpp"
#include "holly/ta_fifo_polygon_converter.hpp"
#include "holly/ta_global_parameter.hpp"
#include "holly/ta_parameter.hpp"
#include "holly/ta_vertex_parameter.hpp"
#include "holly/texture_memory_alloc3.hpp"
#include "holly/video_output.hpp"
#include "sh7091/serial.hpp"
#include "sh7091/store_queue.hpp"
#include "systembus.hpp"
#include "systembus_bits.hpp"
#include "memory.hpp"
#include "model/model.h"
#include "model/material.h"
#include "model/elizabeth/elizabeth_mat_emissive.data.h"
#include "model/elizabeth/elizabeth_sword_mat_emissive.data.h"
#include "model/elizabeth/material.h"
#include "model/elizabeth/model.h"
using vec3 = vec<3, float>;
using vec2 = vec<2, float>;
const float degree = 0.017453292519943295;
static float theta = 0;
static int frame = 0;
static inline vec3 transform_vertex(const vec3 vec, const vec3 translate)
{
float xm = -vec.x;
float ym = -vec.y;
float zm = vec.z;
float x0 = xm * cos(theta) - zm * sin(theta);
float y0 = ym;
float z0 = xm * sin(theta) + zm * cos(theta);
float x1 = x0 + translate.x;
float y1 = y0 + translate.y;
float z1 = z0 + translate.z;
float x2 = x1;
float y2 = y1 + 1;
float z2 = z1 + 1.2;
float x3 = x2 / z2;
float y3 = y2 / z2;
float z3 = 1.0 / z2;
float x = x3 * 240 + 320;
float y = y3 * 240 + 320 - 50;
float z = z3;
return {x, y, z};
}
static inline vec2 transform_uv(vec2 uv)
{
float x = uv.x;
float y = uv.y;
return {x, y};
}
const uint32_t base_color = 0xa0000000;
static inline void transfer_triangle(const vertex_position * position,
const vertex_texture * texture,
const union triangle * triangle,
const vec3 translate)
{
vec3 v1 = transform_vertex(position[triangle->a.position], translate);
vec2 uv1 = transform_uv(texture[triangle->a.texture]);
*reinterpret_cast<ta_vertex_parameter::polygon_type_3 *>(store_queue) =
ta_vertex_parameter::polygon_type_3(polygon_vertex_parameter_control_word(false),
v1.x, v1.y, v1.z,
uv1.x, uv1.y,
base_color,
0); // offset_color
sq_transfer_32byte(ta_fifo_polygon_converter);
vec3 v2 = transform_vertex(position[triangle->b.position], translate);
vec2 uv2 = transform_uv(texture[triangle->b.texture]);
*reinterpret_cast<ta_vertex_parameter::polygon_type_3 *>(store_queue) =
ta_vertex_parameter::polygon_type_3(polygon_vertex_parameter_control_word(false),
v2.x, v2.y, v2.z,
uv2.x, uv2.y,
base_color,
0); // offset_color
sq_transfer_32byte(ta_fifo_polygon_converter);
vec3 v3 = transform_vertex(position[triangle->c.position], translate);
vec2 uv3 = transform_uv(texture[triangle->c.texture]);
*reinterpret_cast<ta_vertex_parameter::polygon_type_3 *>(store_queue) =
ta_vertex_parameter::polygon_type_3(polygon_vertex_parameter_control_word(true),
v3.x, v3.y, v3.z,
uv3.x, uv3.y,
base_color,
0); // offset_color
sq_transfer_32byte(ta_fifo_polygon_converter);
}
static inline void transfer_quadrilateral(const vertex_position * position,
const vertex_texture * texture,
const union quadrilateral * quadrilateral,
const vec3 translate)
{
vec3 v1 = transform_vertex(position[quadrilateral->a.position], translate);
vec2 uv1 = transform_uv(texture[quadrilateral->a.texture]);
*reinterpret_cast<ta_vertex_parameter::polygon_type_3 *>(store_queue) =
ta_vertex_parameter::polygon_type_3(polygon_vertex_parameter_control_word(false),
v1.x, v1.y, v1.z,
uv1.x, uv1.y,
base_color,
0); // offset_color
sq_transfer_32byte(ta_fifo_polygon_converter);
vec3 v2 = transform_vertex(position[quadrilateral->b.position], translate);
vec2 uv2 = transform_uv(texture[quadrilateral->b.texture]);
*reinterpret_cast<ta_vertex_parameter::polygon_type_3 *>(store_queue) =
ta_vertex_parameter::polygon_type_3(polygon_vertex_parameter_control_word(false),
v2.x, v2.y, v2.z,
uv2.x, uv2.y,
base_color,
0); // offset_color
sq_transfer_32byte(ta_fifo_polygon_converter);
vec3 v4 = transform_vertex(position[quadrilateral->d.position], translate);
vec2 uv4 = transform_uv(texture[quadrilateral->d.texture]);
*reinterpret_cast<ta_vertex_parameter::polygon_type_3 *>(store_queue) =
ta_vertex_parameter::polygon_type_3(polygon_vertex_parameter_control_word(false),
v4.x, v4.y, v4.z,
uv4.x, uv4.y,
base_color,
0); // offset_color
sq_transfer_32byte(ta_fifo_polygon_converter);
vec3 v3 = transform_vertex(position[quadrilateral->c.position], translate);
vec2 uv3 = transform_uv(texture[quadrilateral->c.texture]);
*reinterpret_cast<ta_vertex_parameter::polygon_type_3 *>(store_queue) =
ta_vertex_parameter::polygon_type_3(polygon_vertex_parameter_control_word(true),
v3.x, v3.y, v3.z,
uv3.x, uv3.y,
base_color,
0); // offset_color
sq_transfer_32byte(ta_fifo_polygon_converter);
}
static inline void transfer_triangles(const struct model * model,
const struct material_descriptor * material,
const struct object * object,
const uint32_t list_type,
const uint32_t blending,
const uint32_t pixel_format,
const vec3 translate)
{
if (object->triangle_count == 0 && object->quadrilateral_count == 0)
return;
const uint32_t parameter_control_word = para_control::para_type::polygon_or_modifier_volume
| list_type
| obj_control::col_type::packed_color
| obj_control::texture;
const uint32_t isp_tsp_instruction_word = isp_tsp_instruction_word::depth_compare_mode::greater
| isp_tsp_instruction_word::culling_mode::no_culling;
const uint32_t tsp_instruction_word = blending
| tsp_instruction_word::fog_control::no_fog;
const uint32_t texture_address = texture_memory_alloc.texture.start + material[object->material].pixel.vram_offset;
const uint32_t texture_control_word = pixel_format
| texture_control_word::scan_order::twiddled
| texture_control_word::texture_address(texture_address / 8);
*reinterpret_cast<ta_global_parameter::polygon_type_0 *>(store_queue) =
ta_global_parameter::polygon_type_0(parameter_control_word,
isp_tsp_instruction_word,
tsp_instruction_word,
texture_control_word,
0, // data_size_for_sort_dma
0 // next_address_for_sort_dma
);
sq_transfer_32byte(ta_fifo_polygon_converter);
for (int i = 0; i < object->triangle_count; i++) {
transfer_triangle(model->position, model->texture, &object->triangle[i], translate);
}
for (int i = 0; i < object->quadrilateral_count; i++) {
transfer_quadrilateral(model->position, model->texture, &object->quadrilateral[i], translate);
}
}
void transfer_scene()
{
const struct model * model = &elizabeth_model;
const struct material_descriptor * material = elizabeth_material;
// opaque
{
const uint32_t list_type = para_control::list_type::opaque;
const uint32_t blending = tsp_instruction_word::src_alpha_instr::one
| tsp_instruction_word::dst_alpha_instr::zero
| tsp_instruction_word::texture_u_size::from_int(128)
| tsp_instruction_word::texture_v_size::from_int(128);
const uint32_t pixel_format = texture_control_word::pixel_format::_1555;
const vec3 translate = {-0.3, -0.2, 0};
transfer_triangles(model, material,
&elizabeth_elizabeth_opaque,
list_type,
blending,
pixel_format, translate);
*reinterpret_cast<ta_global_parameter::end_of_list *>(store_queue) =
ta_global_parameter::end_of_list(para_control::para_type::end_of_list);
sq_transfer_32byte(ta_fifo_polygon_converter);
}
// punch through
{
const uint32_t list_type = para_control::list_type::punch_through;
const uint32_t blending = tsp_instruction_word::src_alpha_instr::src_alpha
| tsp_instruction_word::dst_alpha_instr::inverse_src_alpha
| tsp_instruction_word::texture_u_size::from_int(128)
| tsp_instruction_word::texture_v_size::from_int(128);
const uint32_t pixel_format = texture_control_word::pixel_format::_1555;
const vec3 translate = {-0.3, -0.2, 0};
transfer_triangles(model, material,
&elizabeth_elizabeth_punchthrough,
list_type,
blending,
pixel_format,
translate);
const uint32_t blending_sword = tsp_instruction_word::src_alpha_instr::src_alpha
| tsp_instruction_word::dst_alpha_instr::inverse_src_alpha
| tsp_instruction_word::texture_u_size::from_int(32)
| tsp_instruction_word::texture_v_size::from_int(64);
const vec3 translate_sword = {1, -0.8, 0};
transfer_triangles(model, material,
&elizabeth_elizabeth_sword,
list_type,
blending_sword,
pixel_format,
translate_sword);
*reinterpret_cast<ta_global_parameter::end_of_list *>(store_queue) =
ta_global_parameter::end_of_list(para_control::para_type::end_of_list);
sq_transfer_32byte(ta_fifo_polygon_converter);
}
}
void transfer_ta_fifo_texture_memory_32byte(void * dst, void * src, int length)
{
uint32_t out_addr = (uint32_t)dst;
sh7091.CCN.QACR0 = ((reinterpret_cast<uint32_t>(out_addr) >> 24) & 0b11100);
sh7091.CCN.QACR1 = ((reinterpret_cast<uint32_t>(out_addr) >> 24) & 0b11100);
volatile uint32_t * base = &store_queue[(out_addr & 0x03ffffc0) / 4];
uint32_t * src32 = reinterpret_cast<uint32_t *>(src);
length = (length + 31) & ~31; // round up to nearest multiple of 32
while (length > 0) {
base[0] = src32[0];
base[1] = src32[1];
base[2] = src32[2];
base[3] = src32[3];
base[4] = src32[4];
base[5] = src32[5];
base[6] = src32[6];
base[7] = src32[7];
asm volatile ("pref @%0"
: // output
: "r" (&base[0]) // input
: "memory");
length -= 32;
base += 8;
src32 += 8;
}
}
void transfer_textures()
{
system.LMMODE0 = 0; // 64-bit address space
system.LMMODE1 = 0; // 64-bit address space
for (uint32_t i = 0; i < (sizeof (elizabeth_material)) / (sizeof (elizabeth_material[0])); i++) {
const struct pixel_descriptor * pixel = &elizabeth_material[i].pixel;
uint32_t offset = texture_memory_alloc.texture.start + pixel->vram_offset;
void * dst = reinterpret_cast<void *>(&ta_fifo_texture_memory[offset / 4]);
void * src = reinterpret_cast<void *>(pixel->start);
transfer_ta_fifo_texture_memory_32byte(dst, src, pixel->width * pixel->height * 2);
}
}
void main()
{
serial::init(0);
transfer_textures();
constexpr uint32_t ta_alloc = ta_alloc_ctrl::pt_opb::_16x4byte
| ta_alloc_ctrl::tm_opb::no_list
| ta_alloc_ctrl::t_opb::no_list
| ta_alloc_ctrl::om_opb::no_list
| ta_alloc_ctrl::o_opb::_16x4byte;
constexpr int render_passes = 1;
constexpr struct opb_size opb_size[render_passes] = {
{
.opaque = 16 * 4,
.opaque_modifier = 0,
.translucent = 0,
.translucent_modifier = 0,
.punch_through = 16 * 4
}
};
holly.SOFTRESET = softreset::pipeline_soft_reset
| softreset::ta_soft_reset;
holly.SOFTRESET = 0;
core_init();
video_output::set_mode_vga();
const int framebuffer_width = 640;
const int framebuffer_height = 480;
const int tile_width = framebuffer_width / 32;
const int tile_height = framebuffer_height / 32;
region_array_multipass(tile_width,
tile_height,
opb_size,
render_passes,
texture_memory_alloc.region_array[0].start,
texture_memory_alloc.object_list[0].start);
background_parameter2(texture_memory_alloc.background[0].start,
0xff9090c0);
frame = 0;
while (1) {
ta_polygon_converter_init2(texture_memory_alloc.isp_tsp_parameters[0].start,
texture_memory_alloc.isp_tsp_parameters[0].end,
texture_memory_alloc.object_list[0].start,
texture_memory_alloc.object_list[0].end,
opb_size[0].total(),
ta_alloc,
tile_width,
tile_height);
transfer_scene();
ta_wait_punch_through_list();
core_start_render2(texture_memory_alloc.region_array[0].start,
texture_memory_alloc.isp_tsp_parameters[0].start,
texture_memory_alloc.background[0].start,
texture_memory_alloc.framebuffer[0].start,
framebuffer_width);
core_wait_end_of_render_video();
while (!spg_status::vsync(holly.SPG_STATUS));
holly.FB_R_SOF1 = texture_memory_alloc.framebuffer[0].start;
while (spg_status::vsync(holly.SPG_STATUS));
frame += 1;
theta += degree / 2;
}
serial::string("return\nreturn\nreturn\n");
}