dreamcast/example/modifier_volume_with_two_volumes.cpp
Zack Buhman 31eb0df508 maple: remove all remaining uses of the two-argument "dma_start"
After thinking about this more, I realized it is probably never useful, and
certainly completely incorrect in all of the cases it was still being used in
the examples.
2024-02-03 10:15:39 +08:00

456 lines
14 KiB
C++

#include <cstdint>
#include <bit>
#include "align.hpp"
#include "vga.hpp"
#include "holly/texture_memory_alloc.hpp"
#include "holly/holly.hpp"
#include "holly/core.hpp"
#include "holly/core_bits.hpp"
#include "holly/ta_fifo_polygon_converter.hpp"
#include "holly/ta_parameter.hpp"
#include "holly/ta_global_parameter.hpp"
#include "holly/ta_vertex_parameter.hpp"
#include "holly/ta_bits.hpp"
#include "holly/region_array.hpp"
#include "holly/background.hpp"
#include "holly/isp_tsp.hpp"
#include "memorymap.hpp"
#include "geometry/plane.hpp"
#include "geometry/cube.hpp"
#include "math/vec3.hpp"
#include "math/vec4.hpp"
#include "maple/maple.hpp"
#include "maple/maple_impl.hpp"
#include "maple/maple_bus_bits.hpp"
#include "maple/maple_bus_commands.hpp"
#include "maple/maple_bus_ft0.hpp"
#include "macaw.hpp"
#include "wolf.hpp"
#include "twiddle.hpp"
static ft0::data_transfer::data_format data[4];
void do_get_condition(uint32_t * command_buf,
uint32_t * receive_buf)
{
using command_type = get_condition;
using response_type = data_transfer<ft0::data_transfer::data_format>;
get_condition::data_fields data_fields = {
.function_type = std::byteswap(function_type::controller)
};
const uint32_t command_size = maple::init_host_command_all_ports<command_type, response_type>(command_buf, receive_buf,
data_fields);
using host_response_type = struct maple::command_response<response_type::data_fields>;
auto host_response = reinterpret_cast<host_response_type *>(receive_buf);
maple::dma_start(command_buf, command_size,
receive_buf, maple::sizeof_command(host_response));
for (uint8_t port = 0; port < 4; port++) {
auto& bus_data = host_response[port].bus_data;
if (bus_data.command_code != response_type::command_code) {
return;
}
auto& data_fields = bus_data.data_fields;
if ((data_fields.function_type & std::byteswap(function_type::controller)) == 0) {
return;
}
data[port].analog_axis_1 = data_fields.data.analog_axis_1;
data[port].analog_axis_2 = data_fields.data.analog_axis_2;
data[port].analog_axis_3 = data_fields.data.analog_axis_3;
data[port].analog_axis_4 = data_fields.data.analog_axis_4;
}
}
struct rot_pos {
float theta;
float x;
float y;
};
vec3 _transform(const vec3& point,
const uint32_t scale)
{
float x = point.x;
float y = point.y;
float z = point.z;
x *= scale;
y *= scale;
z *= scale;
// world transform
y += 2.0f;
x *= 0.8;
y *= 0.8;
z *= 0.8;
// camera transform
z += 4;
// perspective
x = x / z;
y = y / z;
// screen space transform
x *= 240.f;
y *= 240.f;
x += 320.f;
y += 240.f;
z = 1 / z;
return {x, y, z};
}
vec3 _transform(const vec3& point,
const uint32_t scale,
const struct rot_pos& rot_pos)
{
float x = point.x;
float y = point.y;
float z = point.z;
float t;
// object transform
t = z * cos(rot_pos.theta) - x * sin(rot_pos.theta);
x = z * sin(rot_pos.theta) + x * cos(rot_pos.theta);
z = t;
x += rot_pos.x;
z += rot_pos.y;
x *= scale;
y *= scale;
z *= scale;
// world transform
y += 2.0f;
x *= 0.8;
y *= 0.8;
z *= 0.8;
// camera transform
z += 4;
// perspective
x = x / z;
y = y / z;
// screen space transform
x *= 240.f;
y *= 240.f;
x += 320.f;
y += 240.f;
z = 1 / z;
return {x, y, z};
}
uint32_t argb8888(const vec4& color)
{
return ((static_cast<int>(255.f * color.a) & 0xff) << 24)
| ((static_cast<int>(255.f * color.r) & 0xff) << 16)
| ((static_cast<int>(255.f * color.g) & 0xff) << 8)
| ((static_cast<int>(255.f * color.b) & 0xff) << 0)
;
}
void transform_polygon(ta_parameter_writer& parameter,
const vec3 * vertices,
const vec2 * texture,
const face_vtn& face,
const float scale,
const vec4& color0,
const vec4& color1,
const struct rot_pos& rot_pos)
{
const uint32_t parameter_control_word = para_control::para_type::polygon_or_modifier_volume
| para_control::list_type::opaque
| obj_control::col_type::packed_color
| obj_control::shadow
| obj_control::volume::polygon::with_two_volumes
| obj_control::texture;
const uint32_t isp_tsp_instruction_word = isp_tsp_instruction_word::depth_compare_mode::greater
| isp_tsp_instruction_word::culling_mode::no_culling;
const uint32_t tsp_instruction_word = tsp_instruction_word::src_alpha_instr::one
| tsp_instruction_word::dst_alpha_instr::zero
| tsp_instruction_word::fog_control::no_fog
| tsp_instruction_word::texture_u_size::from_int(128)
| tsp_instruction_word::texture_v_size::from_int(128);
uint32_t texture_address0 = (offsetof (struct texture_memory_alloc, texture)) + 128 * 128 * 2 * 0;
uint32_t texture_address1 = (offsetof (struct texture_memory_alloc, texture)) + 128 * 128 * 2 * 1;
const uint32_t texture_control_word_0 = texture_control_word::pixel_format::_565
| texture_control_word::scan_order::twiddled
| texture_control_word::texture_address(texture_address0 / 8);
const uint32_t texture_control_word_1 = texture_control_word::pixel_format::_565
| texture_control_word::scan_order::twiddled
| texture_control_word::texture_address(texture_address1 / 8);
parameter.append<ta_global_parameter::polygon_type_3>() =
ta_global_parameter::polygon_type_3(parameter_control_word,
isp_tsp_instruction_word,
tsp_instruction_word, // tsp_instruction_word_0
texture_control_word_0, // texture_control_word_0
tsp_instruction_word, // tsp_instruction_word_1
texture_control_word_1, // texture_control_word_1
0, // data_size_for_sort_dma
0 // next_address_for_sort_dma
);
constexpr uint32_t strip_length = 3;
for (uint32_t i = 0; i < strip_length; i++) {
// world transform
uint32_t vertex_ix = face[i].vertex;
auto& vertex = vertices[vertex_ix];
auto point = _transform(vertex, scale, rot_pos);
uint32_t texture_ix = face[i].texture;
auto& uv = texture[texture_ix];
bool end_of_strip = i == strip_length - 1;
parameter.append<ta_vertex_parameter::polygon_type_11>() =
ta_vertex_parameter::polygon_type_11(polygon_vertex_parameter_control_word(end_of_strip),
point.x,
point.y,
point.z,
uv.u,
uv.v,
argb8888(color0), // base_color_0
0, // offset_color_0
uv.u,
uv.v,
argb8888(color1), // base_color_1
0 // offset_color_1
);
}
}
void transform_modifier_volume(ta_parameter_writer& parameter,
const vec3 * vertices,
const face_vtn * faces,
const uint32_t num_faces,
const float scale)
{
const uint32_t parameter_control_word = para_control::para_type::polygon_or_modifier_volume
| para_control::list_type::opaque_modifier_volume
// | group_control::group_en
// | group_control::user_clip::inside_enable
;
const uint32_t isp_tsp_instruction_word = isp_tsp_instruction_word::volume_instruction::normal_polygon
| isp_tsp_instruction_word::culling_mode::no_culling;
parameter.append<ta_global_parameter::modifier_volume>() =
ta_global_parameter::modifier_volume(parameter_control_word,
isp_tsp_instruction_word
);
for (uint32_t i = 0; i < num_faces; i++) {
// world transform
uint32_t ix_a = faces[i][0].vertex;
uint32_t ix_b = faces[i][1].vertex;
uint32_t ix_c = faces[i][2].vertex;
auto& _a = vertices[ix_a];
auto& _b = vertices[ix_b];
auto& _c = vertices[ix_c];
auto a = _transform(_a, scale);
auto b = _transform(_b, scale);
auto c = _transform(_c, scale);
if (i == (num_faces - 1)) {
const uint32_t last_parameter_control_word = para_control::para_type::polygon_or_modifier_volume
| para_control::list_type::opaque_modifier_volume
| obj_control::volume::modifier_volume::last_in_volume;
const uint32_t last_isp_tsp_instruction_word = isp_tsp_instruction_word::volume_instruction::inside_last_polygon
| isp_tsp_instruction_word::culling_mode::no_culling;
parameter.append<ta_global_parameter::modifier_volume>() =
ta_global_parameter::modifier_volume(last_parameter_control_word,
last_isp_tsp_instruction_word);
}
parameter.append<ta_vertex_parameter::modifier_volume>() =
ta_vertex_parameter::modifier_volume(modifier_volume_vertex_parameter_control_word(),
a.x, a.y, a.z,
b.x, b.y, b.z,
c.x, c.y, c.z);
}
}
void init_texture_memory(const struct opb_size& opb_size)
{
auto mem = reinterpret_cast<volatile texture_memory_alloc *>(texture_memory32);
background_parameter(mem->background, 0xff220000);
region_array2(mem->region_array,
(offsetof (struct texture_memory_alloc, object_list)),
640 / 32, // width
480 / 32, // height
opb_size
);
}
void
load_texture(const uint8_t * src,
const uint32_t size,
const uint32_t ix)
{
auto mem = reinterpret_cast<volatile texture_memory_alloc *>(texture_memory64);
uint16_t temp[size / 3];
for (uint32_t px = 0; px < size / 3; px++) {
uint8_t r = src[px * 3 + 0];
uint8_t g = src[px * 3 + 1];
uint8_t b = src[px * 3 + 2];
uint16_t rgb565 = ((r / 8) << 11) | ((g / 4) << 5) | ((b / 8) << 0);
temp[px] = rgb565;
}
twiddle::texture(&mem->texture[(128 * 128 * 2 * ix) / 2], temp, 128, 128);
}
void update_rot_pos(struct rot_pos& rot_pos)
{
const float l_pos = static_cast<float>(data[0].analog_axis_1) * (1.f / 255.f);
const float r_pos = static_cast<float>(data[0].analog_axis_2) * (1.f / 255.f);
const float x_pos = static_cast<float>(data[0].analog_axis_3 - 0x80) * (0.5f / 127.f);
const float y_pos = static_cast<float>(data[0].analog_axis_4 - 0x80) * (0.5f / 127.f);
const float rotation = (l_pos > r_pos) ? (l_pos) : (-r_pos);
constexpr float half_degree = 0.01745329f / 2;
rot_pos.x += x_pos / 10.f;
rot_pos.y += y_pos / 10.f;
rot_pos.theta += rotation * half_degree * 10.f;
}
uint32_t _ta_parameter_buf[((32 * 8192) + 32) / 4];
uint32_t _command_buf[(1024 + 32) / 4];
uint32_t _receive_buf[(1024 + 32) / 4];
void main()
{
vga();
auto src0 = reinterpret_cast<const uint8_t *>(&_binary_macaw_data_start);
auto size0 = reinterpret_cast<const uint32_t>(&_binary_macaw_data_size);
auto src1 = reinterpret_cast<const uint8_t *>(&_binary_wolf_data_start);
auto size1 = reinterpret_cast<const uint32_t>(&_binary_wolf_data_size);
load_texture(src0, size0, 0);
load_texture(src1, size1, 1);
// The address of `ta_parameter_buf` must be a multiple of 32 bytes.
// This is mandatory for ch2-dma to the ta fifo polygon converter.
uint32_t * ta_parameter_buf = align_32byte(_ta_parameter_buf);
uint32_t * command_buf = align_32byte(_command_buf);
uint32_t * receive_buf = align_32byte(_receive_buf);
constexpr uint32_t ta_alloc = ta_alloc_ctrl::pt_opb::no_list
| ta_alloc_ctrl::tm_opb::no_list
| ta_alloc_ctrl::t_opb::no_list
| ta_alloc_ctrl::om_opb::_16x4byte
| ta_alloc_ctrl::o_opb::_16x4byte;
constexpr struct opb_size opb_size = { .opaque = 16 * 4
, .opaque_modifier = 16 * 4
, .translucent = 0
, .translucent_modifier = 0
, .punch_through = 0
};
holly.SOFTRESET = softreset::pipeline_soft_reset
| softreset::ta_soft_reset;
holly.SOFTRESET = 0;
core_init();
holly.FPU_SHAD_SCALE = fpu_shad_scale::simple_shadow_enable::parameter_selection_volume_mode;
init_texture_memory(opb_size);
uint32_t frame_ix = 0;
constexpr uint32_t num_frames = 1;
struct rot_pos rot_pos = { 0.f, 0.f, 0.f };
while (true) {
do_get_condition(command_buf, receive_buf);
update_rot_pos(rot_pos);
ta_polygon_converter_init(opb_size.total(),
ta_alloc,
640 / 32,
480 / 32);
auto parameter = ta_parameter_writer(ta_parameter_buf);
{ // plane
vec4 color0 = {1.0, 0.9, 0.9, 0.9};
vec4 color1 = {1.0, 0.9, 0.9, 0.9};
float scale = 2.f;
for (uint32_t i = 0; i < plane::num_faces; i++) {
transform_polygon(parameter,
plane::vertices,
plane::texture,
plane::faces[i],
scale,
color0,
color1,
rot_pos);
}
/*
for (uint32_t i = 0; i < cube::num_faces; i++) {
transform_polygon(parameter,
cube::vertices,
cube::faces[i],
1.f,
{1.0f, 0.0f, 1.0f, 0.0f});
}
*/
}
// end of opaque list
parameter.append<ta_global_parameter::end_of_list>() = ta_global_parameter::end_of_list(para_control::para_type::end_of_list);
{ // cube
float scale = 1.f;
transform_modifier_volume(parameter,
cube::vertices,
cube::faces,
cube::num_faces,
scale);
}
// end of opaque modifier list
parameter.append<ta_global_parameter::end_of_list>() = ta_global_parameter::end_of_list(para_control::para_type::end_of_list);
ta_polygon_converter_transfer(ta_parameter_buf, parameter.offset);
ta_wait_opaque_modifier_volume_list();
core_start_render(frame_ix, num_frames);
core_wait_end_of_render_video();
while (!spg_status::vsync(holly.SPG_STATUS));
core_flip(frame_ix, num_frames);
while (spg_status::vsync(holly.SPG_STATUS));
frame_ix += 1;
}
}