dreamcast/math/geometry.hpp

259 lines
6.4 KiB
C++

#include <tuple>
#include "vec.hpp"
namespace geometry {
template <int L, typename T>
constexpr inline
T line_plane_intersection_d(const vec<L, T>& plane_point, // p0
const vec<L, T>& plane_normal, // n
const vec<L, T>& line_start, // l0
const vec<L, T>& line_vector // l
)
{
const T intersection = // d
dot(plane_point - line_start, plane_normal)
/ dot(line_vector, plane_normal);
return intersection;
}
template <int L, typename T>
constexpr inline
vec<L, T> line_plane_intersection(const vec<L, T>& plane_point, // p0
const vec<L, T>& plane_normal, // n
const vec<L, T>& line_start, // l0
const vec<L, T>& line_end
)
{
const auto line_vector = line_end - line_start; // l
const T intersection = line_plane_intersection_d(plane_point, plane_normal, line_start, line_vector); // d
return line_start + line_vector * intersection;
}
template <int L, typename T, int M>
constexpr inline
std::tuple<vec<L, T>, vec<M, T>> line_plane_intersection_two_lines(const vec<L, T>& plane_point, // p0
const vec<L, T>& plane_normal, // n
const vec<L, T>& line_start, // l0
const vec<L, T>& line_end,
const vec<M, T>& line2_start,
const vec<M, T>& line2_end
)
{
/* it is assumed that line and line2 are the same line, but in different
coordinates spaces. It is therefore possible to re-use the same
interpolation value on either line vector.
*/
const auto line_vector = line_end - line_start; // l
const auto line2_vector = line2_end - line2_start;
const T intersection = line_plane_intersection_d(plane_point, plane_normal, line_start, line_vector); // d
return { line_start + line_vector * intersection
, line2_start + line2_vector * intersection
};
}
template <int L, typename T>
T clip_boundary(const vec<L, T>& plane_point, // X
const vec<L, T>& plane_normal, // Nc
const vec<L, T>& line_point
)
{
return dot(plane_normal, line_point - plane_point);
}
template <typename T>
inline T positive_modulo(T a, T b)
{
return (a % b + b) % b;
}
template <int polygon_len, int L, typename T>
inline int clip_polygon1(vec<L, T> * output,
const vec<L, T> plane_point,
const vec<L, T> plane_normal,
const vec<L, T> * polygon,
const int ix_s,
const int ix_f,
const bool last_inside)
{
const vec<L, T>& s = polygon[ix_s];
const vec<L, T>& f = polygon[ix_f];
bool this_inside = 0.f < clip_boundary<L, T>(plane_point,
plane_normal,
f);
int length = 0;
switch ((last_inside << 1) | (this_inside << 0)) {
case 0b00: // no output
length = 0;
break;
case 0b01: // I, F
length = 2;
{
const auto i = line_plane_intersection<L, T>(plane_point, plane_normal, s, f);
*output++ = i;
*output++ = f;
}
break;
case 0b10: // I
length = 1;
{
const auto i = line_plane_intersection<L, T>(plane_point, plane_normal, s, f);
*output++ = i;
}
break;
case 0b11: // F
length = 1;
*output++ = f;
break;
}
bool end_of_polygon = ix_f == (polygon_len - 1);
if (!end_of_polygon) {
return length +
clip_polygon1<polygon_len, L, T>(output,
plane_point,
plane_normal,
polygon,
ix_f,
ix_f + 1,
this_inside);
} else {
return length;
}
}
template <int polygon_len, int L, typename T>
int clip_polygon(vec<L, T> * output,
const vec<L, T>& plane_point,
const vec<L, T>& plane_normal,
const vec<L, T> * polygon
)
{
const vec<L, T> f = polygon[polygon_len - 1];
// It would be nice to remove the extra dot product, but the
// alternative seems likely uglier.
bool this_inside = 0.f < clip_boundary<L, T>(plane_point,
plane_normal,
f);
return clip_polygon1<polygon_len, L, T>(output,
plane_point,
plane_normal,
polygon,
polygon_len - 1, // ix_s
0, // ix_f
this_inside);
}
template <int polygon_len, int L, typename T, int M>
inline int clip_polygon1_uv(vec<L, T> * output,
vec<M, T> * output_uv,
const vec<L, T> plane_point,
const vec<L, T> plane_normal,
const vec<L, T> * polygon,
const vec<M, T> * polygon_uv,
const int ix_s,
const int ix_f,
const bool last_inside)
{
const vec<L, T>& s = polygon[ix_s];
const vec<L, T>& f = polygon[ix_f];
const vec<M, T>& s_uv = polygon_uv[ix_s];
const vec<M, T>& f_uv = polygon_uv[ix_f];
bool this_inside = 0.f < clip_boundary<L, T>(plane_point,
plane_normal,
f);
int length = 0;
switch ((last_inside << 1) | (this_inside << 0)) {
case 0b00: // no output
length = 0;
break;
case 0b01: // I, F
length = 2;
{
auto [i, i_uv] = line_plane_intersection_two_lines<L, T, M>(plane_point, plane_normal,
s, f,
s_uv, f_uv);
*output++ = i;
*output_uv++ = i_uv;
*output++ = f;
*output_uv++ = f_uv;
}
break;
case 0b10: // I
length = 1;
{
auto [i, i_uv] = line_plane_intersection_two_lines<L, T, M>(plane_point, plane_normal,
s, f,
s_uv, f_uv);
*output++ = i;
*output_uv++ = i_uv;
}
break;
case 0b11: // F
length = 1;
*output++ = f;
*output_uv++ = f_uv;
break;
}
bool end_of_polygon = ix_f == (polygon_len - 1);
if (!end_of_polygon) {
return length +
clip_polygon1_uv<polygon_len, L, T, M>(output,
output_uv,
plane_point,
plane_normal,
polygon,
polygon_uv,
ix_f,
ix_f + 1,
this_inside);
} else {
return length;
}
}
template <int polygon_len, int L, typename T, int M>
int clip_polygon_uv(vec<L, T> * output,
vec<M, T> * output_uv,
const vec<L, T>& plane_point,
const vec<L, T>& plane_normal,
const vec<L, T> * polygon,
const vec<M, T> * polygon_uv
)
{
const vec<L, T> f = polygon[polygon_len - 1];
// It would be nice to remove the extra dot product, but the
// alternative seems likely uglier.
bool this_inside = 0.f < clip_boundary<L, T>(plane_point,
plane_normal,
f);
return clip_polygon1_uv<polygon_len, L, T, M>(output,
output_uv,
plane_point,
plane_normal,
polygon,
polygon_uv,
polygon_len - 1, // ix_s
0, // ix_f
this_inside);
}
}