dreamcast/example/clipping_textured.cpp
Zack Buhman bcaa9789cf texture_memory_alloc: rework texture memory allocation
The previous texture_memory_alloc.hpp was written based on an
incorrect understanding of the "32-bit" and "64-bit" texture memory
address mapping.

The primary motivation is to rearrange the texture memory address map
so that "textures" (64-bit access) do not overlap with 32-bit
accesses, such as REGION_BASE or PARAM_BASE.
2024-05-12 17:06:00 +08:00

335 lines
10 KiB
C++

#include <cstdint>
#include <bit>
#include "align.hpp"
#include "holly/video_output.hpp"
#include "holly/holly.hpp"
#include "holly/core.hpp"
#include "holly/core_bits.hpp"
#include "holly/ta_fifo_polygon_converter.hpp"
#include "holly/ta_parameter.hpp"
#include "holly/ta_vertex_parameter.hpp"
#include "holly/ta_global_parameter.hpp"
#include "holly/ta_bits.hpp"
#include "holly/isp_tsp.hpp"
#include "holly/region_array.hpp"
#include "holly/background.hpp"
#include "holly/texture_memory_alloc.hpp"
#include "memorymap.hpp"
#include "sh7091/serial.hpp"
#include "geometry/triangle.hpp"
#include "geometry/circle.hpp"
#include "math/vec4.hpp"
#include "math/math.hpp"
#include "math/geometry.hpp"
#include "maple/maple.hpp"
#include "maple/maple_impl.hpp"
#include "maple/maple_bus_bits.hpp"
#include "maple/maple_bus_commands.hpp"
#include "maple/maple_bus_ft0.hpp"
#include "twiddle.hpp"
#include "macaw.hpp"
uint32_t _command_buf[(1024 + 32) / 4];
uint32_t _receive_buf[(1024 + 32) / 4];
static ft0::data_transfer::data_format data[4];
void do_get_condition(uint32_t * command_buf,
uint32_t * receive_buf)
{
using command_type = get_condition;
using response_type = data_transfer<ft0::data_transfer::data_format>;
get_condition::data_fields data_fields = {
.function_type = std::byteswap(function_type::controller)
};
const uint32_t command_size = maple::init_host_command_all_ports<command_type, response_type>(command_buf, receive_buf,
data_fields);
using host_response_type = struct maple::command_response<response_type::data_fields>;
auto host_response = reinterpret_cast<host_response_type *>(receive_buf);
maple::dma_start(command_buf, command_size,
receive_buf, maple::sizeof_command(host_response));
using command_response_type = struct maple::command_response<response_type::data_fields>;
for (uint8_t port = 0; port < 4; port++) {
auto response = reinterpret_cast<command_response_type *>(receive_buf);
auto& bus_data = response[port].bus_data;
if (bus_data.command_code != response_type::command_code) {
return;
}
auto& data_fields = bus_data.data_fields;
if ((data_fields.function_type & std::byteswap(function_type::controller)) == 0) {
return;
}
data[port].analog_axis_1 = data_fields.data.analog_axis_1;
data[port].analog_axis_2 = data_fields.data.analog_axis_2;
data[port].analog_axis_3 = data_fields.data.analog_axis_3;
data[port].analog_axis_4 = data_fields.data.analog_axis_4;
}
}
constexpr vec3 colors[] = {
{1.f, 0.5f, 0.f},
{0.f, 1.0f, 0.f},
{0.f, 0.5f, 1.f},
{1.f, 0.0f, 1.f},
};
void transform1(ta_parameter_writer& parameter,
const vec3& v,
const vec2& uv,
bool end_of_strip)
{
float x = v.x;
float y = v.y;
float z = v.z;
// camera transform
z += 1;
// screen space transform
x *= 240.f;
y *= 240.f;
x += 320.f;
y += 240.f;
z = 1 / z;
constexpr uint32_t color = 0xffffffff;
parameter.append<ta_vertex_parameter::polygon_type_3>() =
ta_vertex_parameter::polygon_type_3(polygon_vertex_parameter_control_word(end_of_strip),
x, y, z,
uv.u, uv.v,
color,
0 // offset_color
);
}
void transform(ta_parameter_writer& parameter,
const vec3 * vertices,
const vec2 * texture,
const face_vtn& face,
const vec4& color,
const vec3& position,
const float theta,
const bool enable_clipping
)
{
const uint32_t parameter_control_word = para_control::para_type::polygon_or_modifier_volume
| para_control::list_type::opaque
| obj_control::col_type::packed_color
| obj_control::texture;
const uint32_t isp_tsp_instruction_word = isp_tsp_instruction_word::depth_compare_mode::greater
| isp_tsp_instruction_word::culling_mode::no_culling;
const uint32_t tsp_instruction_word = tsp_instruction_word::src_alpha_instr::one
| tsp_instruction_word::dst_alpha_instr::zero
| tsp_instruction_word::fog_control::no_fog
| tsp_instruction_word::texture_u_size::from_int(128)
| tsp_instruction_word::texture_v_size::from_int(128);
const uint32_t texture_address = texture_memory_alloc::texture.start;
const uint32_t texture_control_word = texture_control_word::pixel_format::_565
| texture_control_word::scan_order::twiddled
| texture_control_word::texture_address(texture_address / 8);
constexpr uint32_t strip_length = 3;
vec3 points[strip_length];
vec2 points_uv[strip_length];
// object transform and clip
for (uint32_t i = 0; i < strip_length; i++) {
uint32_t vertex_ix = face[i].vertex;
auto vertex = vertices[vertex_ix];
vertex = (vertex * 0.5f);
// rotate 90° around the X axis
//float x = vertex.x;
//float y = vertex.z;
//float z = vertex.y;
float x = vertex.x * cos(theta) - vertex.z * sin(theta);
float y = vertex.x * sin(theta) + vertex.z * cos(theta);
float z = vertex.y;
// object transform
x += position.x; // object space
y += position.y; // object space
z += position.z; // object space
// clip
points[i] = vec3(x, y, z);
points_uv[i] = texture[face[i].texture];
}
const vec3 plane_point = {0.f, 0.f, 0.f};
const vec3 plane_normal = {-1.f, 0.f, 0.f};
vec3 output[4];
vec2 output_uv[4];
int output_length = geometry::clip_polygon_uv<3>(output,
output_uv,
plane_point,
plane_normal,
points,
points_uv);
if (output_length >= 3) {
parameter.append<ta_global_parameter::polygon_type_0>() =
ta_global_parameter::polygon_type_0(parameter_control_word,
isp_tsp_instruction_word,
tsp_instruction_word,
texture_control_word,
0, // data_size_for_sort_dma
0 // next_address_for_sort_dma
);
transform1(parameter, output[0], output_uv[0], false);
transform1(parameter, output[1], output_uv[1], false);
transform1(parameter, output[2], output_uv[2], true);
}
if (output_length >= 4) {
parameter.append<ta_global_parameter::polygon_type_0>() =
ta_global_parameter::polygon_type_0(parameter_control_word,
isp_tsp_instruction_word,
tsp_instruction_word,
texture_control_word,
0, // data_size_for_sort_dma
0 // next_address_for_sort_dma
);
transform1(parameter, output[0], output_uv[0], false);
transform1(parameter, output[2], output_uv[2], false);
transform1(parameter, output[3], output_uv[3], true);
}
/*
A B
D C
*/
}
void init_texture_memory(const struct opb_size& opb_size)
{
region_array2(640 / 32, // width
480 / 32, // height
opb_size
);
background_parameter(0xff220000);
}
void init_macaw_texture()
{
auto src = reinterpret_cast<const uint8_t *>(&_binary_macaw_data_start);
auto size = reinterpret_cast<const uint32_t>(&_binary_macaw_data_size);
auto texture = reinterpret_cast<volatile uint16_t *>(&texture_memory64[texture_memory_alloc::texture.start / 4]);
uint16_t temp[size / 3];
for (uint32_t px = 0; px < size / 3; px++) {
uint8_t r = src[px * 3 + 0];
uint8_t g = src[px * 3 + 1];
uint8_t b = src[px * 3 + 2];
uint16_t rgb565 = ((r / 8) << 11) | ((g / 4) << 5) | ((b / 8) << 0);
temp[px] = rgb565;
}
twiddle::texture(texture, temp, 128, 128);
}
uint32_t _ta_parameter_buf[((32 * 8192) + 32) / 4];
void main()
{
uint32_t * command_buf = align_32byte(_command_buf);
uint32_t * receive_buf = align_32byte(_receive_buf);
video_output::set_mode_vga();
init_macaw_texture();
// The address of `ta_parameter_buf` must be a multiple of 32 bytes.
// This is mandatory for ch2-dma to the ta fifo polygon converter.
uint32_t * ta_parameter_buf = align_32byte(_ta_parameter_buf);
constexpr uint32_t ta_alloc = ta_alloc_ctrl::pt_opb::no_list
| ta_alloc_ctrl::tm_opb::no_list
| ta_alloc_ctrl::t_opb::no_list
| ta_alloc_ctrl::om_opb::no_list
| ta_alloc_ctrl::o_opb::_16x4byte;
constexpr struct opb_size opb_size = { .opaque = 16 * 4
, .opaque_modifier = 0
, .translucent = 0
, .translucent_modifier = 0
, .punch_through = 0
};
holly.SOFTRESET = softreset::pipeline_soft_reset
| softreset::ta_soft_reset;
holly.SOFTRESET = 0;
core_init();
init_texture_memory(opb_size);
uint32_t frame_ix = 0;
float theta = 0;
float x_pos = 0;
float y_pos = 0;
while (1) {
do_get_condition(command_buf, receive_buf);
ta_polygon_converter_init(opb_size.total(),
ta_alloc,
640 / 32,
480 / 32);
const float l_ = static_cast<float>(data[0].analog_axis_1) * (1.f / 255.f);
const float r_ = static_cast<float>(data[0].analog_axis_2) * (1.f / 255.f);
const float t_ = ((l_ > r_) ? l_ : -r_) * 3.14f / 2.f;
if (t_ > theta) theta += (0.04f * ((t_ - theta) * (t_ - theta)));
else theta -= (0.04f * ((t_ - theta) * (t_ - theta)));
const float x_ = static_cast<float>(data[0].analog_axis_3 - 0x80) / 127.f;
const float y_ = static_cast<float>(data[0].analog_axis_4 - 0x80) / 127.f;
if (x_ > x_pos) x_pos += (0.02f * ((x_ - x_pos) * (x_ - x_pos)));
else x_pos -= (0.02f * ((x_ - x_pos) * (x_ - x_pos)));
if (y_ > y_pos) y_pos += (0.02f * ((y_ - y_pos) * (y_ - y_pos)));
else y_pos -= (0.02f * ((y_ - y_pos) * (y_ - y_pos)));
auto parameter = ta_parameter_writer(ta_parameter_buf);
for (uint32_t i = 0; i < circle::num_faces; i++) {
transform(parameter,
circle::vertices,
circle::texture,
circle::faces[i],
{1.0f, 1.0f, 0.0f, 0.0f}, // color
{x_pos * 2, y_pos * 2, 0.0f}, // position
theta,
true // clipping
);
}
parameter.append<ta_global_parameter::end_of_list>() = ta_global_parameter::end_of_list(para_control::para_type::end_of_list);
ta_polygon_converter_transfer(ta_parameter_buf, parameter.offset);
ta_wait_opaque_list();
core_start_render(frame_ix);
core_wait_end_of_render_video();
while (!spg_status::vsync(holly.SPG_STATUS));
core_flip(frame_ix);
while (spg_status::vsync(holly.SPG_STATUS));
frame_ix = (frame_ix + 1) & 1;;
}
}