dreamcast/example/clipping.cpp
Zack Buhman bcaa9789cf texture_memory_alloc: rework texture memory allocation
The previous texture_memory_alloc.hpp was written based on an
incorrect understanding of the "32-bit" and "64-bit" texture memory
address mapping.

The primary motivation is to rearrange the texture memory address map
so that "textures" (64-bit access) do not overlap with 32-bit
accesses, such as REGION_BASE or PARAM_BASE.
2024-05-12 17:06:00 +08:00

319 lines
9.1 KiB
C++

#include <cstdint>
#include <bit>
#include "align.hpp"
#include "holly/video_output.hpp"
#include "holly/holly.hpp"
#include "holly/core.hpp"
#include "holly/core_bits.hpp"
#include "holly/ta_fifo_polygon_converter.hpp"
#include "holly/ta_parameter.hpp"
#include "holly/ta_vertex_parameter.hpp"
#include "holly/ta_global_parameter.hpp"
#include "holly/ta_bits.hpp"
#include "holly/isp_tsp.hpp"
#include "holly/region_array.hpp"
#include "holly/background.hpp"
#include "holly/texture_memory_alloc.hpp"
#include "memorymap.hpp"
#include "sh7091/serial.hpp"
#include "geometry/circle.hpp"
#include "math/vec4.hpp"
#include "math/math.hpp"
#include "maple/maple.hpp"
#include "maple/maple_impl.hpp"
#include "maple/maple_bus_bits.hpp"
#include "maple/maple_bus_commands.hpp"
#include "maple/maple_bus_ft0.hpp"
uint32_t _command_buf[(1024 + 32) / 4];
uint32_t _receive_buf[(1024 + 32) / 4];
static ft0::data_transfer::data_format data[4];
void do_get_condition(uint32_t * command_buf,
uint32_t * receive_buf)
{
using command_type = get_condition;
using response_type = data_transfer<ft0::data_transfer::data_format>;
get_condition::data_fields data_fields = {
.function_type = std::byteswap(function_type::controller)
};
const uint32_t command_size = maple::init_host_command_all_ports<command_type, response_type>(command_buf, receive_buf,
data_fields);
using host_response_type = struct maple::command_response<response_type::data_fields>;
auto host_response = reinterpret_cast<host_response_type *>(receive_buf);
maple::dma_start(command_buf, command_size,
receive_buf, maple::sizeof_command(host_response));
for (uint8_t port = 0; port < 4; port++) {
auto& bus_data = host_response[port].bus_data;
if (bus_data.command_code != response_type::command_code) {
return;
}
auto& data_fields = bus_data.data_fields;
if ((data_fields.function_type & std::byteswap(function_type::controller)) == 0) {
return;
}
data[port].analog_axis_3 = data_fields.data.analog_axis_3;
data[port].analog_axis_4 = data_fields.data.analog_axis_4;
}
}
vec3 intersection(vec3& a, vec3& b, vec3& n)
{
const float t = (-dot(n, a)) / dot(n, b - a);
return a + t * (b - a);
}
void transform(ta_parameter_writer& parameter,
const vec3 * vertices,
const face_vtn& face,
const vec4& color,
const vec3& position,
const bool enable_clipping
)
{
const uint32_t parameter_control_word = para_control::para_type::polygon_or_modifier_volume
| para_control::list_type::opaque
| obj_control::col_type::floating_color
| obj_control::gouraud;
const uint32_t isp_tsp_instruction_word = isp_tsp_instruction_word::depth_compare_mode::greater
| isp_tsp_instruction_word::culling_mode::no_culling;
const uint32_t tsp_instruction_word = tsp_instruction_word::src_alpha_instr::one
| tsp_instruction_word::dst_alpha_instr::zero
| tsp_instruction_word::fog_control::no_fog;
constexpr uint32_t strip_length = 3;
vec3 points[strip_length * 2];
uint32_t positive = 0;
uint32_t negative = 0;
vec3 plane_normal = {-1.f, 0.f, 0.f};
// object transform and clip
for (uint32_t i = 0; i < strip_length; i++) {
uint32_t vertex_ix = face[i].vertex;
auto vertex = vertices[vertex_ix];
vertex = (vertex * 0.5f);
// rotate 90° around the X axis
float x = vertex.x;
float y = vertex.z;
float z = vertex.y;
// object transform
x += position.x; // object space
y += position.y; // object space
z += position.z; // object space
// clip
auto point = vec3(x, y, z);
float distance = dot(plane_normal, point);
if ((!enable_clipping) || distance > 0.0f) {
points[0 + positive] = point;
positive += 1;
} else { // is negative (or intersects)
points[(strip_length - 1) - negative] = point;
negative += 1;
}
}
uint32_t num_tris = 0;
if ((!enable_clipping) || positive == 3) {
num_tris = 1;
// nothing to clip
} else if (positive == 0) {
num_tris = 0;
// clip everything
} else if (positive == 1) {
num_tris = 1;
auto& A = points[0]; // positive
auto& B = points[1]; // negative
auto& C = points[2]; // negative
/*
// A
// /\
// / \
// -AB----AC--
// / \
// B________C
*/
auto AB_ = intersection(A, B, plane_normal);
auto AC_ = intersection(A, C, plane_normal);
points[0] = A;
points[1] = AC_;
points[2] = AB_;
} else if (positive == 2) {
num_tris = 2;
auto& A = points[0]; // positive
auto& B = points[1]; // positive
auto& C = points[2]; // negative
// A _____ B
// \ /
//--AC---BC--
// \ /
// \/
// C
auto AC_ = intersection(A, C, plane_normal);
auto BC_ = intersection(B, C, plane_normal);
points[0] = A;
points[1] = B;
points[2] = AC_;
points[3] = B;
points[4] = BC_;
points[5] = AC_;
}
for (uint32_t j = 0; j < num_tris; j++) {
parameter.append<ta_global_parameter::polygon_type_0>() =
ta_global_parameter::polygon_type_0(parameter_control_word,
isp_tsp_instruction_word,
tsp_instruction_word,
0, // texture_control_word
0, // data_size_for_sort_dma
0 // next_address_for_sort_dma
);
for (uint32_t i = 0; i < strip_length; i++) {
float x = points[3 * j + i].x;
float y = points[3 * j + i].y;
float z = points[3 * j + i].z;
// camera transform
z += 1;
// screen space transform
x *= 240.f;
y *= 240.f;
x += 320.f;
y += 240.f;
z = 1 / z;
bool end_of_strip = i == strip_length - 1;
parameter.append<ta_vertex_parameter::polygon_type_1>() =
ta_vertex_parameter::polygon_type_1(polygon_vertex_parameter_control_word(end_of_strip),
x, y, z,
1.0f, // alpha
(i == 0) ? 1.0f : 0.0f, // r
(i == 1) ? 1.0f : 0.0f, // g
(i == 2) ? 1.0f : 0.0f // b
);
}
}
}
void init_texture_memory(const struct opb_size& opb_size)
{
region_array2(640 / 32, // width
480 / 32, // height
opb_size
);
background_parameter(0xff00ff00);
}
uint32_t _ta_parameter_buf[((32 * 8192) + 32) / 4];
void main()
{
uint32_t * command_buf = align_32byte(_command_buf);
uint32_t * receive_buf = align_32byte(_receive_buf);
video_output::set_mode_vga();
// The address of `ta_parameter_buf` must be a multiple of 32 bytes.
// This is mandatory for ch2-dma to the ta fifo polygon converter.
uint32_t * ta_parameter_buf = align_32byte(_ta_parameter_buf);
constexpr uint32_t ta_alloc = ta_alloc_ctrl::pt_opb::no_list
| ta_alloc_ctrl::tm_opb::no_list
| ta_alloc_ctrl::t_opb::no_list
| ta_alloc_ctrl::om_opb::no_list
| ta_alloc_ctrl::o_opb::_16x4byte;
constexpr struct opb_size opb_size = { .opaque = 16 * 4
, .opaque_modifier = 0
, .translucent = 0
, .translucent_modifier = 0
, .punch_through = 0
};
holly.SOFTRESET = softreset::pipeline_soft_reset
| softreset::ta_soft_reset;
holly.SOFTRESET = 0;
core_init();
init_texture_memory(opb_size);
uint32_t frame_ix = 0;
float theta = 0;
float x_pos = 0;
float y_pos = 0;
while (1) {
do_get_condition(command_buf, receive_buf);
ta_polygon_converter_init(opb_size.total(),
ta_alloc,
640 / 32,
480 / 32);
float x_ = static_cast<float>(data[0].analog_axis_3 - 0x80) / 127.f;
float y_ = static_cast<float>(data[0].analog_axis_4 - 0x80) / 127.f;
if (x_ > x_pos) x_pos += (0.09f * ((x_ - x_pos) * (x_ - x_pos)));
if (x_ < x_pos) x_pos -= (0.09f * ((x_ - x_pos) * (x_ - x_pos)));
if (y_ > y_pos) y_pos += (0.09f * ((y_ - y_pos) * (y_ - y_pos)));
if (y_ < y_pos) y_pos -= (0.09f * ((y_ - y_pos) * (y_ - y_pos)));
auto parameter = ta_parameter_writer(ta_parameter_buf);
for (uint32_t i = 0; i < circle::num_faces; i++) {
/*
transform(parameter,
circle::vertices,
circle::faces[i],
vec4{1.0f, 0.5f, 0.5f, 0.0f} * (((i/1.2f) * (1.f / circle::num_faces)) + (1.f/1.2f)), // color
{x_pos * 2, y_pos * 2, 1.0f}, // position
false // clipping
);
*/
transform(parameter,
circle::vertices,
circle::faces[i],
{1.0f, 1.0f, 0.0f, 0.0f}, // color
{x_pos * 2, y_pos * 2, 0.0f}, // position
true // clipping
);
}
parameter.append<ta_global_parameter::end_of_list>() = ta_global_parameter::end_of_list(para_control::para_type::end_of_list);
ta_polygon_converter_transfer(ta_parameter_buf, parameter.offset);
ta_wait_opaque_list();
core_start_render(frame_ix);
core_wait_end_of_render_video();
while (!spg_status::vsync(holly.SPG_STATUS));
core_flip(frame_ix);
while (spg_status::vsync(holly.SPG_STATUS));
frame_ix = (frame_ix + 1) & 1;;
theta += (2.f * pi) / 720.f;
}
}