dreamcast/example/bloom_lightmap.cpp

1368 lines
48 KiB
C++

#include <bit>
#include "holly/background.hpp"
#include "holly/core.hpp"
#include "holly/core_bits.hpp"
#include "holly/holly.hpp"
#include "holly/isp_tsp.hpp"
#include "holly/region_array.hpp"
#include "holly/ta_bits.hpp"
#include "holly/ta_fifo_polygon_converter.hpp"
#include "holly/ta_global_parameter.hpp"
#include "holly/ta_parameter.hpp"
#include "holly/ta_vertex_parameter.hpp"
#include "holly/texture_memory_alloc5.hpp"
#include "holly/video_output.hpp"
#include "systembus.hpp"
#include "systembus_bits.hpp"
#include "maple/maple.hpp"
#include "maple/maple_host_command_writer.hpp"
#include "maple/maple_bus_bits.hpp"
#include "maple/maple_bus_commands.hpp"
#include "maple/maple_bus_ft0.hpp"
#include "memorymap.hpp"
#include "sh7091/sh7091.hpp"
#include "sh7091/sh7091_bits.hpp"
#include "sh7091/serial.hpp"
#include "printf/printf.h"
#include "interrupt.hpp"
#include "assert.h"
#include "math/vec2.hpp"
#include "math/vec3.hpp"
#include "math/vec4.hpp"
#include "math/mat2x2.hpp"
#include "math/mat3x3.hpp"
#include "math/mat4x4.hpp"
#include "math/geometry.hpp"
#include "math/transform.hpp"
using vec2 = vec<2, float>;
using vec3 = vec<3, float>;
using vec4 = vec<4, float>;
using mat4x4 = mat<4, 4, float>;
#include "model/blender_export.h"
#include "model/bloom_lightmap/scene.h"
#include "model/bloom_lightmap/container2.vq.h"
#include "model/bloom_lightmap/container_lightmap.vq.h"
#include "model/bloom_lightmap/floor_lightmap.vq.h"
#include "model/bloom_lightmap/wood.vq.h"
constexpr int bloom_width = 128;
constexpr int bloom_height = 96;
constexpr float bloom_u_size = 128;
constexpr float bloom_v_size = 128;
struct texture {
const void * start;
const int size;
const int offset;
const int width;
const int height;
};
enum texture_e {
TEX_WOOD,
TEX_CONTAINER2,
TEX_FLOOR_LIGHTMAP,
TEX_CONTAINER_LIGHTMAP,
};
const int bloom_size = bloom_width * bloom_height * 2;
const int wood_size = (int)&_binary_model_bloom_lightmap_wood_vq_size;
const int container2_size = (int)&_binary_model_bloom_lightmap_container2_vq_size;
const int floor_lightmap_size = (int)&_binary_model_bloom_lightmap_floor_lightmap_vq_size;
const int container_lightmap_size = (int)&_binary_model_bloom_lightmap_container_lightmap_vq_size;
const struct texture textures[] = {
[TEX_WOOD] = {
.start = (void *)&_binary_model_bloom_lightmap_wood_vq_start,
.size = wood_size,
.offset = bloom_size,
.width = 1024,
.height = 1024,
},
[TEX_CONTAINER2] = {
.start = (void *)&_binary_model_bloom_lightmap_container2_vq_start,
.size = container2_size,
.offset = bloom_size + wood_size,
.width = 512,
.height = 512,
},
[TEX_FLOOR_LIGHTMAP] = {
.start = (void *)&_binary_model_bloom_lightmap_floor_lightmap_vq_start,
.size = floor_lightmap_size,
.offset = bloom_size + wood_size + container2_size,
.width = 1024,
.height = 1024,
},
[TEX_CONTAINER_LIGHTMAP] = {
.start = (void *)&_binary_model_bloom_lightmap_container_lightmap_vq_start,
.size = container_lightmap_size,
.offset = bloom_size + wood_size + container2_size + floor_lightmap_size,
.width = 1024,
.height = 1024,
},
};
static ft0::data_transfer::data_format data[4];
uint8_t send_buf[1024] __attribute__((aligned(32)));
uint8_t recv_buf[1024] __attribute__((aligned(32)));
void do_get_condition()
{
auto writer = maple::host_command_writer(send_buf, recv_buf);
using command_type = maple::get_condition;
using response_type = maple::data_transfer<ft0::data_transfer::data_format>;
auto [host_command, host_response]
= writer.append_command_all_ports<command_type, response_type>();
for (int port = 0; port < 4; port++) {
auto& data_fields = host_command[port].bus_data.data_fields;
data_fields.function_type = std::byteswap(function_type::controller);
}
maple::dma_start(send_buf, writer.send_offset,
recv_buf, writer.recv_offset);
for (uint8_t port = 0; port < 4; port++) {
auto& bus_data = host_response[port].bus_data;
if (bus_data.command_code != response_type::command_code) {
return;
}
auto& data_fields = bus_data.data_fields;
if ((std::byteswap(data_fields.function_type) & function_type::controller) == 0) {
return;
}
data[port].digital_button = data_fields.data.digital_button;
for (int i = 0; i < 6; i++) {
data[port].analog_coordinate_axis[i]
= data_fields.data.analog_coordinate_axis[i];
}
}
}
void vbr100()
{
serial::string("vbr100\n");
interrupt_exception();
}
void vbr400()
{
serial::string("vbr400\n");
interrupt_exception();
}
struct tile_param {
int framebuffer_width;
int framebuffer_height;
int region_array_offset;
consteval int tile_width() const {
return ((uint32_t)framebuffer_width) >> 5;
}
consteval int tile_height() const {
return ((uint32_t)framebuffer_height) >> 5;
}
};
constexpr tile_param tile_param[2] = {
{
.framebuffer_width = bloom_width,
.framebuffer_height = bloom_height,
.region_array_offset = 0,
},
{
.framebuffer_width = 640,
.framebuffer_height = 480,
.region_array_offset = (bloom_width / 32) * (bloom_height / 32) * (sizeof (struct region_array_entry)),
}
};
constexpr int ta_cont_count = 2;
constexpr uint32_t ta_alloc[ta_cont_count] = {
{
ta_alloc_ctrl::pt_opb::no_list
| ta_alloc_ctrl::tm_opb::no_list
| ta_alloc_ctrl::t_opb::no_list
| ta_alloc_ctrl::om_opb::no_list
| ta_alloc_ctrl::o_opb::_32x4byte,
},
{
ta_alloc_ctrl::pt_opb::_32x4byte
| ta_alloc_ctrl::tm_opb::no_list
| ta_alloc_ctrl::t_opb::_8x4byte
| ta_alloc_ctrl::om_opb::_8x4byte
| ta_alloc_ctrl::o_opb::_32x4byte,
},
};
constexpr struct opb_size opb_size[ta_cont_count] = {
{
.opaque = 32 * 4,
.opaque_modifier = 0,
.translucent = 0,
.translucent_modifier = 0,
.punch_through = 0
},
{
.opaque = 32 * 4,
.opaque_modifier = 8 * 4,
.translucent = 8 * 4,
.translucent_modifier = 0,
.punch_through = 32 * 4,
}
};
static volatile int ta_in_use = 0;
static volatile int core_in_use = 0;
static volatile int next_frame = 0;
static volatile int framebuffer_ix = 0;
static volatile int next_frame_ix = 0;
static volatile int render_step = 0;
static inline void pump_events(uint32_t istnrm)
{
if (istnrm & istnrm::v_blank_in) {
system.ISTNRM = istnrm::v_blank_in;
next_frame = 1;
holly.FB_R_SOF1 = texture_memory_alloc.framebuffer[next_frame_ix].start;
}
if (istnrm & istnrm::end_of_render_tsp) {
system.ISTNRM = istnrm::end_of_render_tsp
| istnrm::end_of_render_isp
| istnrm::end_of_render_video;
core_in_use = 0;
}
if (istnrm & istnrm::end_of_transferring_opaque_list) {
system.ISTNRM = istnrm::end_of_transferring_opaque_list;
ta_in_use = 0;
}
}
void vbr600()
{
uint32_t sr;
asm volatile ("stc sr,%0" : "=r" (sr));
sr |= sh::sr::imask(15);
asm volatile ("ldc %0,sr" : : "r" (sr));
//serial::string("imask\n");
//check_pipeline();
if (sh7091.CCN.EXPEVT == 0 && sh7091.CCN.INTEVT == 0x320) {
uint32_t istnrm = system.ISTNRM;
uint32_t isterr = system.ISTERR;
if (isterr) {
serial::string("isterr: ");
serial::integer<uint32_t>(system.ISTERR);
}
pump_events(istnrm);
sr &= ~sh::sr::imask(15);
asm volatile ("ldc %0,sr" : : "r" (sr));
return;
}
serial::string("vbr600\n");
interrupt_exception();
}
void global_polygon_type_0(ta_parameter_writer& writer,
uint32_t para_control_obj_control,
uint32_t tsp_instruction_word,
uint32_t texture_control_word,
uint32_t depth_compare_mode = isp_tsp_instruction_word::depth_compare_mode::greater
)
{
const uint32_t parameter_control_word = para_control::para_type::polygon_or_modifier_volume
| obj_control::col_type::floating_color
| obj_control::gouraud
| para_control_obj_control
;
const uint32_t isp_tsp_instruction_word = depth_compare_mode
| isp_tsp_instruction_word::culling_mode::no_culling
;
writer.append<ta_global_parameter::polygon_type_0>() =
ta_global_parameter::polygon_type_0(parameter_control_word,
isp_tsp_instruction_word,
tsp_instruction_word,
texture_control_word,
0,
0
);
}
void global_polygon_type_3(ta_parameter_writer& writer,
uint32_t tsp_instruction_word_0,
uint32_t texture_control_word_0,
uint32_t tsp_instruction_word_1,
uint32_t texture_control_word_1)
{
const uint32_t parameter_control_word = para_control::para_type::polygon_or_modifier_volume
| para_control::list_type::punch_through
| obj_control::col_type::packed_color
| obj_control::gouraud
| obj_control::shadow
| obj_control::volume::polygon::with_two_volumes
| obj_control::texture
;
const uint32_t isp_tsp_instruction_word = isp_tsp_instruction_word::depth_compare_mode::greater
| isp_tsp_instruction_word::culling_mode::no_culling // cull_if_negative
;
writer.append<ta_global_parameter::polygon_type_3>() =
ta_global_parameter::polygon_type_3(parameter_control_word,
isp_tsp_instruction_word,
tsp_instruction_word_0,
texture_control_word_0,
tsp_instruction_word_1,
texture_control_word_1,
0, // data_size_for_sort_dma
0 // next_address_for_sort_dma
);
}
static inline float clamp(float f)
{
if (f > 1.0)
return 1.0;
if (f < 0.0)
return 0.0;
return f;
}
void transfer_quad(ta_parameter_writer& writer,
vec3 ap,
vec3 bp,
vec3 cp,
vec3 dp,
vec3 ac,
vec3 bc,
vec3 cc,
vec3 dc
)
{
if (ap.z < 0 || bp.z < 0 || cp.z < 0 || dp.z < 0)
return;
const float a = 1.0;
writer.append<ta_vertex_parameter::polygon_type_1>() =
ta_vertex_parameter::polygon_type_1(polygon_vertex_parameter_control_word(false),
ap.x, ap.y, ap.z,
a, ac.x, ac.y, ac.z);
writer.append<ta_vertex_parameter::polygon_type_1>() =
ta_vertex_parameter::polygon_type_1(polygon_vertex_parameter_control_word(false),
bp.x, bp.y, bp.z,
a, bc.x, bc.y, bc.z);
writer.append<ta_vertex_parameter::polygon_type_1>() =
ta_vertex_parameter::polygon_type_1(polygon_vertex_parameter_control_word(false),
dp.x, dp.y, dp.z,
a, dc.x, dc.y, dc.z);
writer.append<ta_vertex_parameter::polygon_type_1>() =
ta_vertex_parameter::polygon_type_1(polygon_vertex_parameter_control_word(true),
cp.x, cp.y, cp.z,
a, cc.x, cc.y, cc.z);
}
void transfer_quad_type_11(ta_parameter_writer& writer,
vec3 ap,
vec3 bp,
vec3 cp,
vec3 dp,
vec2 at0,
vec2 bt0,
vec2 ct0,
vec2 dt0,
vec2 at1,
vec2 bt1,
vec2 ct1,
vec2 dt1,
uint32_t ac,
uint32_t bc,
uint32_t cc,
uint32_t dc
)
{
writer.append<ta_vertex_parameter::polygon_type_11>() =
ta_vertex_parameter::polygon_type_11(polygon_vertex_parameter_control_word(false),
ap.x, ap.y, ap.z,
at0.x, at0.y,
ac, 0,
at1.x, at1.y,
ac, 0);
writer.append<ta_vertex_parameter::polygon_type_11>() =
ta_vertex_parameter::polygon_type_11(polygon_vertex_parameter_control_word(false),
bp.x, bp.y, bp.z,
bt0.x, bt0.y,
bc, 0,
bt1.x, bt1.y,
bc, 0);
writer.append<ta_vertex_parameter::polygon_type_11>() =
ta_vertex_parameter::polygon_type_11(polygon_vertex_parameter_control_word(false),
dp.x, dp.y, dp.z,
dt0.x, dt0.y,
dc, 0,
dt1.x, dt1.y,
dc, 0);
writer.append<ta_vertex_parameter::polygon_type_11>() =
ta_vertex_parameter::polygon_type_11(polygon_vertex_parameter_control_word(true),
cp.x, cp.y, cp.z,
ct0.x, ct0.y,
cc, 0,
ct1.x, ct1.y,
cc, 0);
}
void transfer_tri_type_11(ta_parameter_writer& writer,
vec3 ap,
vec3 bp,
vec3 cp,
vec2 at0,
vec2 bt0,
vec2 ct0,
vec2 at1,
vec2 bt1,
vec2 ct1,
uint32_t ac,
uint32_t bc,
uint32_t cc
)
{
writer.append<ta_vertex_parameter::polygon_type_11>() =
ta_vertex_parameter::polygon_type_11(polygon_vertex_parameter_control_word(false),
ap.x, ap.y, ap.z,
at0.x, at0.y,
ac, 0,
at1.x, at1.y,
ac, 0);
writer.append<ta_vertex_parameter::polygon_type_11>() =
ta_vertex_parameter::polygon_type_11(polygon_vertex_parameter_control_word(false),
bp.x, bp.y, bp.z,
bt0.x, bt0.y,
bc, 0,
bt1.x, bt1.y,
bc, 0);
writer.append<ta_vertex_parameter::polygon_type_11>() =
ta_vertex_parameter::polygon_type_11(polygon_vertex_parameter_control_word(true),
cp.x, cp.y, cp.z,
ct0.x, ct0.y,
cc, 0,
ct1.x, ct1.y,
cc, 0);
}
template <vec3 (*FS)(const vec3& v)>
static inline void transfer_tri_textured_clipped(ta_parameter_writer& writer,
vec3 ap,
vec3 bp,
vec3 cp,
vec2 at0,
vec2 bt0,
vec2 ct0,
vec2 at1,
vec2 bt1,
vec2 ct1,
uint32_t c)
{
const vec3 plane_point = {0.f, 0.f, 0.1f};
const vec3 plane_normal = {0.f, 0.f, 1.f};
vec3 preclip_position[] = {ap, bp, cp};
vec2 preclip_texture0[] = {at0, bt0, ct0};
vec2 preclip_texture1[] = {at1, bt1, ct1};
vec3 clip_position[4];
vec2 clip_texture0[4];
vec2 clip_texture1[4];
int output_length = geometry::clip_polygon_3<3>(clip_position,
clip_texture0,
clip_texture1,
plane_point,
plane_normal,
preclip_position,
preclip_texture0,
preclip_texture1);
{
vec3 ap;
vec3 bp;
vec3 cp;
vec3 dp;
const vec2& at0 = clip_texture0[0];
const vec2& bt0 = clip_texture0[1];
const vec2& ct0 = clip_texture0[2];
const vec2& dt0 = clip_texture0[3];
const vec2& at1 = clip_texture1[0];
const vec2& bt1 = clip_texture1[1];
const vec2& ct1 = clip_texture1[2];
const vec2& dt1 = clip_texture1[3];
if (output_length >= 3) {
ap = FS(clip_position[0]);
bp = FS(clip_position[1]);
cp = FS(clip_position[2]);
transfer_tri_type_11(writer,
ap, bp, cp,
at0, bt0, ct0,
at1, bt1, ct1,
c, c, c);
}
if (output_length >= 4) {
dp = FS(clip_position[3]);
transfer_tri_type_11(writer,
ap, cp, dp,
at0, ct0, dt0,
at1, ct1, dt1,
c, c, c);
}
}
}
vec3 screen_transform1(const vec3& v)
{
float w2 = bloom_width / 2.0;
float h2 = bloom_height / 2.0;
float dim = w2;
float iz = 1.0 / v.z;
return {
v.x * iz * dim + w2,
v.y * iz * dim + h2,
iz,
};
}
vec3 screen_transform2(const vec3& v)
{
float w2 = 640 / 2.0;
float h2 = 480 / 2.0;
float dim = w2;
float iz = 1.0 / v.z;
return {
v.x * iz * dim + w2,
v.y * iz * dim + h2,
iz,
};
}
template <vec3 (*FC)(const mat4x4& trans, const vec3& base_color, const vec3& position),
vec3 (*FS)(const vec3& v) = screen_transform2>
void transfer_mesh(ta_parameter_writer& writer,
const mat4x4& trans,
const object * object,
vec3 base_color)
{
uint32_t control = para_control::list_type::opaque;
uint32_t tsp_instruction_word = tsp_instruction_word::src_alpha_instr::one
| tsp_instruction_word::dst_alpha_instr::zero
| tsp_instruction_word::texture_shading_instruction::decal
| tsp_instruction_word::fog_control::no_fog
;
uint32_t texture_control_word = 0;
global_polygon_type_0(writer,
control,
tsp_instruction_word,
texture_control_word);
const mesh * mesh = object->mesh;
vec3 position_cache[mesh->position_length];
vec3 color_cache[mesh->position_length];
mat4x4 trans_p = trans
* translate(object->location)
* rotate_quaternion(object->rotation)
* scale(object->scale);
for (int i = 0; i < mesh->position_length; i++) {
vec3 p = trans_p * mesh->position[i];
position_cache[i] = p;
color_cache[i] = FC(trans, base_color, p);
}
for (int i = 0; i < mesh->polygons_length; i++) {
const polygon * p = &mesh->polygons[i];
vec3 ap = FS(position_cache[p->a]);
vec3 bp = FS(position_cache[p->b]);
vec3 cp = FS(position_cache[p->c]);
vec3 dp = FS(position_cache[p->d]);
vec3 ac = color_cache[p->a];
vec3 bc = color_cache[p->b];
vec3 cc = color_cache[p->c];
vec3 dc = color_cache[p->d];
transfer_quad(writer, ap, bp, cp, dp, ac, bc, cc, dc);
}
}
vec3 color_diffuse(const mat4x4& trans, const vec3& base_color, const vec3& normal, const vec3& vertex_position);
vec3 color_specular(const mat4x4& trans, const vec3& base_color, const vec3& normal, const vec3& vertex_position);
template <vec3 (*FC)(const mat4x4& trans, const vec3& base_color, const vec3& position),
vec3 (*FS)(const vec3& v)>
void transfer_mesh_textured(ta_parameter_writer& writer,
const mat4x4& trans,
const object * object,
const texture * texture0,
float uv_mul,
const texture * texture1)
{
uint32_t tsp_instruction_word = tsp_instruction_word::fog_control::no_fog
| tsp_instruction_word::texture_shading_instruction::modulate
| tsp_instruction_word::filter_mode::bilinear_filter;
uint32_t texture_control_word = texture_control_word::pixel_format::_565
| texture_control_word::scan_order::twiddled
| texture_control_word::vq_compressed;
uint32_t tsp_instruction_word_0 = tsp_instruction_word
| tsp_instruction_word::src_alpha_instr::one
| tsp_instruction_word::dst_alpha_instr::zero
| tsp_instruction_word::texture_u_size::from_int(texture0->width)
| tsp_instruction_word::texture_v_size::from_int(texture0->height);
uint32_t texture_address_0 = texture_memory_alloc.texture.start + texture0->offset;
uint32_t texture_control_word_0 = texture_control_word
| texture_control_word::texture_address(texture_address_0 / 8);
uint32_t tsp_instruction_word_1 = tsp_instruction_word
| tsp_instruction_word::src_alpha_instr::other_color
| tsp_instruction_word::dst_alpha_instr::zero
| tsp_instruction_word::texture_u_size::from_int(texture1->width)
| tsp_instruction_word::texture_v_size::from_int(texture1->height);
uint32_t texture_address_1 = texture_memory_alloc.texture.start + texture1->offset;
uint32_t texture_control_word_1 = texture_control_word
| texture_control_word::texture_address(texture_address_1 / 8);
global_polygon_type_3(writer,
tsp_instruction_word_0,
texture_control_word_0,
tsp_instruction_word_1,
texture_control_word_1);
const mesh * mesh = object->mesh;
vec3 position_cache[mesh->position_length];
mat4x4 trans_p = trans
* translate(object->location)
* rotate_quaternion(object->rotation)
* scale(object->scale);
//mat4x4 trans_n = trans
//* rotate_quaternion(object->rotation);
for (int i = 0; i < mesh->position_length; i++) {
vec3 p = trans_p * mesh->position[i];
position_cache[i] = p;
}
for (int i = 0; i < mesh->polygons_length; i++) {
const polygon * p = &mesh->polygons[i];
//vec3 normal = normalize(normal_multiply(trans_n, mesh->polygon_normal[i]));
vec3 ap = position_cache[p->a];
vec3 bp = position_cache[p->b];
vec3 cp = position_cache[p->c];
vec3 dp = position_cache[p->d];
if (ap.z < 0 && bp.z < 0 && cp.z < 0 && dp.z < 0)
continue;
//vec3 ac = color_cache[p->a];// * color_diffuse(trans_p, base_color, normal, ap);
//vec3 bc = color_cache[p->b];// * color_diffuse(trans_p, base_color, normal, bp);
//vec3 cc = color_cache[p->c];// * color_diffuse(trans_p, base_color, normal, cp);
//vec3 dc = color_cache[p->d];// * color_diffuse(trans_p, base_color, normal, dp);
vec2 at0 = mesh->uv_layers[0][i * 4 + 0] * uv_mul;
vec2 bt0 = mesh->uv_layers[0][i * 4 + 1] * uv_mul;
vec2 ct0 = mesh->uv_layers[0][i * 4 + 2] * uv_mul;
vec2 dt0 = mesh->uv_layers[0][i * 4 + 3] * uv_mul;
vec2 at1 = mesh->uv_layers[1][i * 4 + 0];
vec2 bt1 = mesh->uv_layers[1][i * 4 + 1];
vec2 ct1 = mesh->uv_layers[1][i * 4 + 2];
vec2 dt1 = mesh->uv_layers[1][i * 4 + 3];
at1.y = 1.0 - at1.y;
bt1.y = 1.0 - bt1.y;
ct1.y = 1.0 - ct1.y;
dt1.y = 1.0 - dt1.y;
uint32_t c = 0xffffffff;
if (ap.z < 0 || bp.z < 0 || cp.z < 0 || dp.z < 0) {
transfer_tri_textured_clipped<FS>(writer,
ap, bp, dp,
at0, bt0, dt0,
at1, bt1, dt1,
c);
transfer_tri_textured_clipped<FS>(writer,
bp, cp, dp,
bt0, ct0, dt0,
bt1, ct1, dt1,
c);
}
else {
transfer_quad_type_11(writer,
FS(ap), FS(bp), FS(cp), FS(dp),
at0, bt0, ct0, dt0,
at1, bt1, ct1, dt1,
c, c, c, c);
}
}
}
constexpr vec2 plane[] = {
{ 0, 0},
{ 1, 0},
{ 1, 1},
{ 0, 1},
};
const vec3 colors[] = {
{0, 0, 1},
{0, 1, 0},
{1, 0, 0},
{1, 1, 1},
};
vec3 color_identity(const mat4x4& trans, const vec3& base_color, const vec3& position)
{
return base_color;
}
vec3 color_diffuse(const mat4x4& trans, const vec3& base_color, const vec3& normal, const vec3& vertex_position)
{
vec3 attenuation = {0, 0, 0};
for (int i = 0; i < 4; i++) {
const object * object = &objects[6 + i];
vec3 light_position = trans * object->location;
vec3 light_dir = normalize(light_position - vertex_position);
float diffuse = max(dot(normal, light_dir), 0.0f);
attenuation += colors[i] * diffuse;
}
return base_color * attenuation;
}
vec3 color_specular(const mat4x4& trans, const vec3& base_color, const vec3& normal, const vec3& vertex_position)
{
vec3 attenuation = {0.1, 0.1, 0.1};
for (int i = 0; i < 4; i++) {
const object * object = &objects[6 + i];
vec3 light_position = trans * object->location;
vec3 light_dir = normalize(light_position - vertex_position);
vec3 view_position = {0, 0, 0};
vec3 view_dir = normalize(view_position - vertex_position);
vec3 reflect_dir = reflect(-light_dir, normal);
float specular = __builtin_powf(max(dot(view_dir, reflect_dir), 0.0f), 64.0f);
attenuation += colors[i] * specular;
}
return base_color * attenuation;
}
vec3 color_point(const mat4x4& trans, const vec3& base_color, const vec3& position)
{
float constant = 1.0;
float linear = 0.7;
float quadratic = 1.8;
vec3 attenuation = {0, 0, 0};
for (int i = 0; i < 4; i++) {
const object * object = &objects[6 + i];
vec3 light_position = trans * object->location;
float distance = magnitude(light_position - position);
float intensity = 1.0 / (constant +
linear * distance +
quadratic * (distance * distance));
attenuation += colors[i] * intensity;
}
return base_color * attenuation;
}
void transfer_modifier_volume(ta_parameter_writer& writer)
{
const uint32_t parameter_control_word = para_control::para_type::polygon_or_modifier_volume
| para_control::list_type::opaque_modifier_volume;
const uint32_t isp_tsp_instruction_word = isp_tsp_instruction_word::volume_instruction::normal_polygon
| isp_tsp_instruction_word::culling_mode::no_culling;
writer.append<ta_global_parameter::modifier_volume>() =
ta_global_parameter::modifier_volume(parameter_control_word,
isp_tsp_instruction_word
);
writer.append<ta_vertex_parameter::modifier_volume>() =
ta_vertex_parameter::modifier_volume(modifier_volume_vertex_parameter_control_word(),
0, 0, 1000,
640, 0, 1000,
640, 480, 1000);
const uint32_t last_parameter_control_word = para_control::para_type::polygon_or_modifier_volume
| para_control::list_type::opaque_modifier_volume
| obj_control::volume::modifier_volume::last_in_volume;
const uint32_t last_isp_tsp_instruction_word = isp_tsp_instruction_word::volume_instruction::inside_last_polygon
| isp_tsp_instruction_word::culling_mode::no_culling;
writer.append<ta_global_parameter::modifier_volume>() =
ta_global_parameter::modifier_volume(last_parameter_control_word,
last_isp_tsp_instruction_word);
writer.append<ta_vertex_parameter::modifier_volume>() =
ta_vertex_parameter::modifier_volume(modifier_volume_vertex_parameter_control_word(),
0, 0, 1000,
640, 480, 1000,
0, 480, 1000);
}
void transfer_scene1(ta_parameter_writer& writer, const mat4x4& trans)
{
vec3 zero = {0, 0, 0};
{ // opaque
transfer_mesh<color_identity, screen_transform1>(writer, trans, &objects[0], zero);
for (int i = 1; i < 6; i++) {
transfer_mesh<color_identity, screen_transform1>(writer, trans, &objects[i], zero);
}
for (int i = 0; i < 4; i++) {
transfer_mesh<color_identity, screen_transform1>(writer, trans, &objects[6 + i], colors[i]);
}
writer.append<ta_global_parameter::end_of_list>() =
ta_global_parameter::end_of_list(para_control::para_type::end_of_list);
}
}
void transfer_quad_textured(ta_parameter_writer& writer,
vec3 ap,
vec3 bp,
vec3 cp,
vec3 dp,
vec2 at,
vec2 bt,
vec2 ct,
vec2 dt,
vec3 ac,
vec3 bc,
vec3 cc,
vec3 dc
)
{
if (ap.z < 0 || bp.z < 0 || cp.z < 0 || dp.z < 0)
return;
const float a = 1.0;
writer.append<ta_vertex_parameter::polygon_type_5>() =
ta_vertex_parameter::polygon_type_5(polygon_vertex_parameter_control_word(false),
ap.x, ap.y, ap.z,
at.x, at.y,
a, ac.x, ac.y, ac.z,
0, 0, 0, 0);
writer.append<ta_vertex_parameter::polygon_type_5>() =
ta_vertex_parameter::polygon_type_5(polygon_vertex_parameter_control_word(false),
bp.x, bp.y, bp.z,
bt.x, bt.y,
a, bc.x, bc.y, bc.z,
0, 0, 0, 0);
writer.append<ta_vertex_parameter::polygon_type_5>() =
ta_vertex_parameter::polygon_type_5(polygon_vertex_parameter_control_word(false),
dp.x, dp.y, dp.z,
dt.x, dt.y,
a, dc.x, dc.y, dc.z,
0, 0, 0, 0);
writer.append<ta_vertex_parameter::polygon_type_5>() =
ta_vertex_parameter::polygon_type_5(polygon_vertex_parameter_control_word(true),
cp.x, cp.y, cp.z,
ct.x, ct.y,
a, cc.x, cc.y, cc.z,
0, 0, 0, 0);
}
void transfer_ss_plane(ta_parameter_writer& writer, vec3 c)
{
uint32_t control = para_control::list_type::translucent
| obj_control::texture;
uint32_t tsp_instruction_word = tsp_instruction_word::src_alpha_instr::one
| tsp_instruction_word::dst_alpha_instr::one
| tsp_instruction_word::texture_shading_instruction::decal
| tsp_instruction_word::fog_control::no_fog
| tsp_instruction_word::texture_u_size::from_int(bloom_u_size)
| tsp_instruction_word::texture_v_size::from_int(bloom_v_size)
| tsp_instruction_word::filter_mode::bilinear_filter
| tsp_instruction_word::clamp_uv::uv;
const uint32_t texture_address = texture_memory_alloc.texture.start;
const uint32_t texture_control_word = texture_control_word::pixel_format::_565
| texture_control_word::scan_order::non_twiddled
| texture_control_word::texture_address(texture_address / 8);
global_polygon_type_0(writer,
control,
tsp_instruction_word,
texture_control_word,
isp_tsp_instruction_word::depth_compare_mode::always);
constexpr vec3 size = {640, 480, 1};
constexpr vec3 ap = (vec3){plane[0].x, plane[0].y, 0.1} * size;
constexpr vec3 bp = (vec3){plane[1].x, plane[1].y, 0.1} * size;
constexpr vec3 cp = (vec3){plane[2].x, plane[2].y, 0.1} * size;
constexpr vec3 dp = (vec3){plane[3].x, plane[3].y, 0.1} * size;
constexpr vec2 tscale = {
(float)bloom_width / bloom_u_size,
(float)bloom_height / bloom_v_size
};
constexpr vec2 at = plane[0] * tscale;
constexpr vec2 bt = plane[1] * tscale;
constexpr vec2 ct = plane[2] * tscale;
constexpr vec2 dt = plane[3] * tscale;
transfer_quad_textured(writer,
ap, bp, cp, dp,
at, bt, ct, dt,
c, c, c, c);
}
void transfer_scene2(ta_parameter_writer& writer, const mat4x4& trans)
{
{ // modifier volume
transfer_modifier_volume(writer);
writer.append<ta_global_parameter::end_of_list>() =
ta_global_parameter::end_of_list(para_control::para_type::end_of_list);
}
{ // punch through
transfer_mesh_textured<color_point, screen_transform2>(writer, trans, &objects[0],
&textures[TEX_WOOD],
2,
&textures[TEX_FLOOR_LIGHTMAP]
);
for (int i = 1; i < 6; i++) {
transfer_mesh_textured<color_point, screen_transform2>(writer, trans, &objects[i],
&textures[TEX_CONTAINER2],
1,
&textures[TEX_CONTAINER_LIGHTMAP]
);
}
writer.append<ta_global_parameter::end_of_list>() =
ta_global_parameter::end_of_list(para_control::para_type::end_of_list);
}
{ // translucent
transfer_ss_plane(writer, colors[3]);
writer.append<ta_global_parameter::end_of_list>() =
ta_global_parameter::end_of_list(para_control::para_type::end_of_list);
}
{ // opaque
for (int i = 0; i < 4; i++) {
transfer_mesh<color_identity, screen_transform2>(writer, trans, &objects[6 + i], colors[i]);
}
writer.append<ta_global_parameter::end_of_list>() =
ta_global_parameter::end_of_list(para_control::para_type::end_of_list);
}
}
void update_analog(mat4x4& screen)
{
const float l_ = static_cast<float>(data[0].analog_coordinate_axis[0]) * (1.f / 255.f);
const float r_ = static_cast<float>(data[0].analog_coordinate_axis[1]) * (1.f / 255.f);
const float x_ = static_cast<float>(data[0].analog_coordinate_axis[2] - 0x80) / 127.f;
const float y_ = static_cast<float>(data[0].analog_coordinate_axis[3] - 0x80) / 127.f;
float yt = -0.05f * x_;
float xt = 0.05f * y_;
mat4x4 ry = rotate_z(yt);
mat4x4 rx = rotate_x(xt);
screen = screen * ry * rx;
}
void ch1_dma_transfer(void * source, void * destination, uint32_t transfers)
{
using namespace dmac;
volatile uint32_t _dummy = sh7091.DMAC.CHCR1;
(void)_dummy;
sh7091.DMAC.CHCR1 = 0;
assert((((uint32_t)source) & 0b11111) == 0);
assert((((uint32_t)destination) & 0b11111) == 0);
sh7091.DMAC.SAR1 = (uint32_t)source;
sh7091.DMAC.DAR1 = (uint32_t)destination;
sh7091.DMAC.DMATCR1 = transfers & 0x00ff'ffff;
sh7091.DMAC.CHCR1 = chcr::dm::destination_address_incremented
| chcr::sm::source_address_incremented
| chcr::rs::resource_select(0b0100) /* auto request, external address space → external address space */
| chcr::tm::cycle_burst_mode /* transmit mode */
//| chcr::tm::cycle_steal_mode /* transmit mode */
| chcr::ts::_32_byte /* transfer size */
//| chcr::ie::interrupt_request_generated
| chcr::de::channel_operation_enabled;
for (uint32_t i = 0; i < transfers; i++) {
asm volatile ("ocbp @%0"
: // output
: "r" (((uint32_t)destination) + (32 * i)) // input
);
}
// wait for DMA completion
while ((sh7091.DMAC.CHCR1 & dmac::chcr::te::transfers_completed) == 0);
}
void ch2_dma_transfer(void * source, void * destination, uint32_t transfers)
{
using namespace dmac;
assert((((uint32_t)source) & 0b11111) == 0);
assert((((uint32_t)destination) & 0b11111) == 0);
for (uint32_t i = 0; i < transfers; i++) {
asm volatile ("ocbwb @%0"
: // output
: "r" (((uint32_t)source) + (32 * i)) // input
);
}
// this dummy read appears to be required on real hardware.
volatile uint32_t _dummy = sh7091.DMAC.CHCR2;
(void)_dummy;
/* start a new CH2-DMA transfer from "system memory" to "TA FIFO polygon converter" */
sh7091.DMAC.CHCR2 = 0; /* disable DMA channel */
sh7091.DMAC.SAR2 = (uint32_t)source; /* start address, must be aligned to a CHCHR__TS-sized (32-byte) boundary */
sh7091.DMAC.DMATCR2 = dmatcr::transfer_count(transfers); /* transfer count, in CHCHR__TS-sized (32-byte) units */
sh7091.DMAC.CHCR2 = chcr::dm::destination_address_incremented
| chcr::sm::source_address_incremented
| chcr::rs::resource_select(0b0010) /* external request, single address mode;
external address space → external device */
| chcr::tm::cycle_burst_mode /* transmit mode */
| chcr::ts::_32_byte /* transfer size */
| chcr::de::channel_operation_enabled;
system.C2DSTAT = c2dstat::texture_memory_start_address((uint32_t)destination); /* CH2-DMA destination address */
system.C2DLEN = c2dlen::transfer_length(transfers * 32); /* CH2-DMA length (must be a multiple of 32) */
system.C2DST = 1; /* CH2-DMA start (an 'external' request from SH7091's perspective) */
// wait for ch2-dma completion
while ((system.ISTNRM & istnrm::end_of_dma_ch2_dma) == 0);
// reset ch2-dma interrupt status
system.ISTNRM = istnrm::end_of_dma_ch2_dma;
}
static void dma_init()
{
using namespace dmac;
sh7091.DMAC.CHCR0 = 0;
sh7091.DMAC.CHCR1 = 0;
sh7091.DMAC.CHCR2 = 0;
sh7091.DMAC.CHCR3 = 0;
sh7091.DMAC.DMAOR = dmaor::ddt::on_demand_data_transfer_mode /* on-demand data transfer mode */
| dmaor::pr::ch2_ch0_ch1_ch3 /* priority mode; CH2 > CH0 > CH1 > CH3 */
| dmaor::dme::operation_enabled_on_all_channels; /* DMAC master enable */
}
void gauss_rgb565(uint16_t const * const src, uint16_t * const dst);
void transfer_ta_fifo_texture_memory_32byte(void * dst, const void * src, int length)
{
assert((((int)dst) & 31) == 0);
assert((((int)length) & 31) == 0);
uint32_t out_addr = (uint32_t)dst;
sh7091.CCN.QACR0 = ((reinterpret_cast<uint32_t>(out_addr) >> 24) & 0b11100);
sh7091.CCN.QACR1 = ((reinterpret_cast<uint32_t>(out_addr) >> 24) & 0b11100);
volatile uint32_t * base = &store_queue[(out_addr & 0x03ffffe0) / 4];
const uint32_t * src32 = reinterpret_cast<const uint32_t *>(src);
length = (length + 31) & ~31; // round up to nearest multiple of 32
while (length > 0) {
base[0] = src32[0];
base[1] = src32[1];
base[2] = src32[2];
base[3] = src32[3];
base[4] = src32[4];
base[5] = src32[5];
base[6] = src32[6];
base[7] = src32[7];
asm volatile ("pref @%0"
: // output
: "r" (&base[0]) // input
: "memory");
length -= 32;
base += 8;
src32 += 8;
}
}
void transfer_bloom_scene_textures()
{
uint32_t last_end = 0;
for (uint32_t i = 0; i < (sizeof (textures)) / (sizeof (textures[0])); i++) {
uint32_t offset = texture_memory_alloc.texture.start + textures[i].offset;
void * dst = reinterpret_cast<void *>(&ta_fifo_texture_memory[offset / 4]);
assert(offset >= last_end);
last_end = offset + textures[i].size;
assert(last_end < 0x800000);
transfer_ta_fifo_texture_memory_32byte(dst, textures[i].start, textures[i].size);
}
}
void transfer_textures()
{
system.LMMODE0 = 0;
system.LMMODE1 = 0; // 64-bit
transfer_bloom_scene_textures();
}
uint8_t __attribute__((aligned(32))) ta_parameter_buf1[1024 * 1024];
uint8_t __attribute__((aligned(32))) ta_parameter_buf2[1024 * 1024];
int main()
{
serial::init(0);
interrupt_init();
dma_init();
transfer_textures();
holly.SOFTRESET = softreset::pipeline_soft_reset
| softreset::ta_soft_reset;
holly.SOFTRESET = 0;
core_init();
holly.FPU_SHAD_SCALE = fpu_shad_scale::simple_shadow_enable::parameter_selection_volume_mode;
holly.TEXT_CONTROL = text_control::stride(5);
system.IML6NRM = istnrm::end_of_render_tsp
| istnrm::v_blank_in
| istnrm::end_of_transferring_opaque_list;
region_array_multipass(tile_param[0].tile_width(),
tile_param[0].tile_height(),
&opb_size[0],
1,
texture_memory_alloc.region_array.start + tile_param[0].region_array_offset,
texture_memory_alloc.object_list.start);
region_array_multipass(tile_param[1].tile_width(),
tile_param[1].tile_height(),
&opb_size[1],
1,
texture_memory_alloc.region_array.start + tile_param[1].region_array_offset,
texture_memory_alloc.object_list.start,
REGION_ARRAY__PRE_SORT);
background_parameter2(texture_memory_alloc.background[0].start,
0xff000000);
background_parameter2(texture_memory_alloc.background[1].start,
0xff000000);
ta_parameter_writer writer1 = ta_parameter_writer(ta_parameter_buf1, (sizeof (ta_parameter_buf1)));
ta_parameter_writer writer2 = ta_parameter_writer(ta_parameter_buf2, (sizeof (ta_parameter_buf2)));
video_output::set_mode_vga();
mat4x4 screen_trans = {
1, 0, 0, 0,
0, 0, -1, 0,
0, 1, 0, 3,
0, 0, 0, 1,
};
do_get_condition();
while (1) {
maple::dma_wait_complete();
do_get_condition();
update_analog(screen_trans);
writer1.offset = 0;
transfer_scene1(writer1, screen_trans);
writer2.offset = 0;
transfer_scene2(writer2, screen_trans);
if (1) { // ta 0
assert(!ta_in_use); ta_in_use = 1;
ta_polygon_converter_init2(texture_memory_alloc.isp_tsp_parameters.start,
texture_memory_alloc.isp_tsp_parameters.end,
texture_memory_alloc.object_list.start,
texture_memory_alloc.object_list.end,
opb_size[0].total(),
ta_alloc[0],
tile_param[0].tile_width(),
tile_param[0].tile_height());
ta_polygon_converter_writeback(writer1.buf, writer1.offset);
ta_polygon_converter_transfer(writer1.buf, writer1.offset);
while (ta_in_use);
}
if (1) { // core 0
assert(!core_in_use); core_in_use = 1;
uint32_t region_array_start = texture_memory_alloc.region_array.start
+ tile_param[0].region_array_offset;
uint32_t framebuffer_start = 0x100'0000 | texture_memory_alloc.texture.start;
core_start_render2(region_array_start,
texture_memory_alloc.isp_tsp_parameters.start,
texture_memory_alloc.background[0].start,
framebuffer_start,
tile_param[0].framebuffer_width
);
while (core_in_use);
}
{ // gauss
static uint16_t input[bloom_width * bloom_height] __attribute__((aligned(32)));
static uint16_t output[bloom_width * bloom_height] __attribute__((aligned(32)));
static_assert((sizeof (input)) == (sizeof (output)));
uint32_t transfers = (sizeof (input)) / 32;
void * texture = (void *)&texture_memory64[texture_memory_alloc.texture.start / 4];
ch1_dma_transfer(texture, input, transfers);
gauss_rgb565(input, output);
ch1_dma_transfer(output, texture, transfers);
}
{ // ta 1
assert(!ta_in_use); ta_in_use = 1;
ta_polygon_converter_init2(texture_memory_alloc.isp_tsp_parameters.start,
texture_memory_alloc.isp_tsp_parameters.end,
texture_memory_alloc.object_list.start,
texture_memory_alloc.object_list.end,
opb_size[1].total(),
ta_alloc[1],
tile_param[1].tile_width(),
tile_param[1].tile_height());
ta_polygon_converter_writeback(writer2.buf, writer2.offset);
ta_polygon_converter_transfer(writer2.buf, writer2.offset);
while (ta_in_use);
}
{ // core 1
assert(!core_in_use); core_in_use = 1;
uint32_t region_array_start = texture_memory_alloc.region_array.start
+ tile_param[1].region_array_offset;
uint32_t framebuffer_start = texture_memory_alloc.framebuffer[framebuffer_ix].start;
system.ISTERR = 0xffffffff;
core_start_render2(region_array_start,
texture_memory_alloc.isp_tsp_parameters.start,
texture_memory_alloc.background[1].start,
framebuffer_start,
tile_param[1].framebuffer_width);
int count = 0;
while (core_in_use) {
if (count++ > 300000) {
printf("isterr %08x istnrm %08x\n", system.ISTERR, system.ISTNRM);
holly.SOFTRESET = softreset::pipeline_soft_reset
| softreset::ta_soft_reset;
holly.SOFTRESET = 0;
core_in_use = 0;
break;
}
}
}
{
next_frame_ix = framebuffer_ix;
framebuffer_ix += 1;
if (framebuffer_ix >= 3) framebuffer_ix = 0;
}
while (next_frame == 0);
next_frame = 0;
}
}