dreamcast/example/game_of_life.cpp

953 lines
28 KiB
C++

#include <bit>
#include "holly/background.hpp"
#include "holly/core.hpp"
#include "holly/core_bits.hpp"
#include "holly/holly.hpp"
#include "holly/isp_tsp.hpp"
#include "holly/region_array.hpp"
#include "holly/ta_bits.hpp"
#include "holly/ta_fifo_polygon_converter.hpp"
#include "holly/ta_global_parameter.hpp"
#include "holly/ta_parameter.hpp"
#include "holly/ta_vertex_parameter.hpp"
#include "holly/texture_memory_alloc7.hpp"
#include "holly/video_output.hpp"
#include "systembus.hpp"
#include "systembus_bits.hpp"
#include "maple/maple.hpp"
#include "maple/maple_host_command_writer.hpp"
#include "maple/maple_bus_bits.hpp"
#include "maple/maple_bus_commands.hpp"
#include "maple/maple_bus_ft0.hpp"
#include "memorymap.hpp"
#include "sh7091/sh7091.hpp"
#include "sh7091/sh7091_bits.hpp"
#include "sh7091/serial.hpp"
#include "printf/printf.h"
#include "math/float_types.hpp"
#include "math/transform.hpp"
#include "interrupt.hpp"
#include "assert.h"
#include "texture/game_of_life/dead.data.h"
#include "texture/game_of_life/live1.data.h"
#include "texture/game_of_life/live2.data.h"
#include "texture/game_of_life/live3.data.h"
#include "texture/game_of_life/live4.data.h"
const int max_knot_segments = 32;
const int max_knot_rings = 256;
int knot_segments = 32;
int knot_rings = 256;
//int knot_rings = 32;
vec3 _knot_center[max_knot_rings];
vec3 _knot_ring[max_knot_rings][max_knot_segments];
//vec3 t_knot_center[max_knot_rings];
vec3 t_knot_ring[max_knot_rings][max_knot_segments];
static inline vec3 knot(const float t)
{
float x = sin(t) + 2 * sin(2 * t);
float y = cos(t) - 2 * cos(2 * t);
float z = -sin(3 * t);
return {x, y, z};
}
static inline vec3 rodrigues_rotation(const vec3 v, const vec3 k, const float t)
{
return v * cos(t) + cross(k, v) * sin(t) + k * dot(k, v) * (1 - cos(t));
}
static inline void radial_segments(const vec3 a,
const vec3 n0,
const vec3 n,
const int segments,
vec3 * radial_surface)
{
for (int i = 0; i < segments; i++) {
float t = ((float)i / (float)segments) * 2.f * pi;
vec3 rn = rodrigues_rotation(n, n0, t);
rn = normalize(rn);
radial_surface[i] = a + rn * 0.6f;
}
}
static inline vec3 knot_center(const float i, const float rings)
{
float t = (i / rings) * 2.f * pi;
vec3 center = knot(t);
return center;
}
void knot_edges(const int rings, const int segments)
{
for (int i = 0; i < rings; i++) {
vec3 center = knot_center(i, rings);
_knot_center[i] = center;
}
for (int i = 0; i < rings; i++) {
int ip = (i + 1) & (rings - 1);
int im = (i - 1) & (rings - 1);
const vec3& a = _knot_center[i];
const vec3& b = _knot_center[ip];
const vec3& c = _knot_center[im];
vec3 n0 = ((b - a) + (a - c)) * 0.5f;
n0 = normalize(n0);
vec3 n = cross(n0, -a);
n = normalize(n);
radial_segments(a, n0, n, segments, &_knot_ring[i][0]);
}
}
struct grid {
int width;
int height;
int generation;
int * data[2];
};
static inline int grid_get(grid const * const grid, int x, int y)
{
x = x & (grid->width - 1);
y = y & (grid->height - 1);
int gen = grid->generation & 1;
return grid->data[gen][y * grid->width + x];
}
static inline void grid_put_p(grid * const grid, int x, int y, int value)
{
x = x & (grid->width - 1);
y = y & (grid->height - 1);
int gen = grid->generation & 1;
grid->data[gen][y * grid->width + x] = value;
}
static inline void grid_put(grid * const grid, int x, int y, int value)
{
x = x & (grid->width - 1);
y = y & (grid->height - 1);
int gen = !(grid->generation & 1);
grid->data[gen][y * grid->width + x] = value;
}
static inline int count_neighbors(grid const * const grid, int x, int y)
{
int count = 0;
count += grid_get(grid, x - 1, y - 1) > 0;
count += grid_get(grid, x - 0, y - 1) > 0;
count += grid_get(grid, x + 1, y - 1) > 0;
count += grid_get(grid, x - 1, y - 0) > 0;
//count += grid_get(grid, x - 0, y - 0) > 0;
count += grid_get(grid, x + 1, y - 0) > 0;
count += grid_get(grid, x - 1, y + 1) > 0;
count += grid_get(grid, x - 0, y + 1) > 0;
count += grid_get(grid, x + 1, y + 1) > 0;
return count;
}
static inline void apply_rule(grid * grid, int x, int y)
{
int live = grid_get(grid, x, y);
int count = count_neighbors(grid, x, y);
if (live < 0) {
// do nothing
} else if (live > 0) {
if (count < 2)
live = 0;
else if (count > 3)
live = 0;
else if (live < 4)
live += 1;
} else { // live == 0
if (count == 3)
live = 1;
}
grid_put(grid, x, y, live);
}
void grid_generation(grid * grid)
{
for (int y = 0; y < grid->height; y++) {
for (int x = 0; x < grid->width; x++) {
apply_rule(grid, x, y);
}
}
grid->generation += 1;
}
void seed_grid(grid * grid, int xo, int yo)
{
static const uint8_t seed[] = {
0, 1, 0,
1, 1, 0,
0, 1, 1,
};
const int seed_width = 3;
const int seed_height = 3;
for (int y = 0; y < grid->height; y++) {
for (int x = 0; x < grid->width; x++) {
if (y < seed_height && x < seed_width) {
grid_put(grid, xo + x, yo + y, seed[y * seed_width + x]);
}
}
}
}
// cell points to next cell
struct cell {
int x;
int y;
};
cell snake_unpack_cell(int a)
{
assert(a < 0);
int x = ((uint32_t)a >> 0) & 0xff;
int y = ((uint32_t)a >> 8) & 0xff;
return {x, y};
}
int snake_pack_cell(cell c)
{
uint32_t v = (1 << 31)
| (((uint32_t)c.x & 0xff) << 0)
| (((uint32_t)c.y & 0xff) << 8);
return v;
}
enum direction : int {
UP,
DOWN,
LEFT,
RIGHT
};
struct snake {
cell head;
cell tail;
enum direction direction;
};
static inline cell move(cell p, int d)
{
switch (d) {
case UP: return {p.x, p.y - 1};
case DOWN: return {p.x, p.y + 1};
case LEFT: return {p.x - 1, p.y};
case RIGHT: return {p.x + 1, p.y};
}
assert(false);
}
void snake_move(grid * grid, snake * snake, bool force_grow)
{
cell head = move(snake->head, snake->direction);
int live = grid_get(grid, head.x, head.y);
grid_put_p(grid, head.x, head.y, -1);
grid_put_p(grid, snake->head.x, snake->head.y,
snake_pack_cell(head));
snake->head.x = head.x;
snake->head.y = head.y;
int grow = live > 0 || force_grow;
if (!grow) {
cell tail = snake_unpack_cell(grid_get(grid, snake->tail.x, snake->tail.y));
grid_put_p(grid, snake->tail.x, snake->tail.y, 0);
snake->tail.x = tail.x;
snake->tail.y = tail.y;
}
}
void snake_init(grid * grid, snake * snake, int x, int y)
{
snake->head = {x - 1, y};
snake->tail = {x - 1, y};
snake->direction = RIGHT;
snake_move(grid, snake, true);
}
static ft0::data_transfer::data_format data[4];
uint8_t send_buf[1024] __attribute__((aligned(32)));
uint8_t recv_buf[1024] __attribute__((aligned(32)));
void do_get_condition()
{
auto writer = maple::host_command_writer(send_buf, recv_buf);
using command_type = maple::get_condition;
using response_type = maple::data_transfer<ft0::data_transfer::data_format>;
auto [host_command, host_response]
= writer.append_command_all_ports<command_type, response_type>();
for (int port = 0; port < 4; port++) {
auto& data_fields = host_command[port].bus_data.data_fields;
data_fields.function_type = std::byteswap(function_type::controller);
}
maple::dma_start(send_buf, writer.send_offset,
recv_buf, writer.recv_offset);
for (uint8_t port = 0; port < 4; port++) {
auto& bus_data = host_response[port].bus_data;
if (bus_data.command_code != response_type::command_code) {
return;
}
auto& data_fields = bus_data.data_fields;
if ((std::byteswap(data_fields.function_type) & function_type::controller) == 0) {
return;
}
data[port].digital_button = data_fields.data.digital_button;
for (int i = 0; i < 6; i++) {
data[port].analog_coordinate_axis[i]
= data_fields.data.analog_coordinate_axis[i];
}
}
}
void vbr100()
{
serial::string("vbr100\n");
interrupt_exception();
}
void vbr400()
{
serial::string("vbr400\n");
interrupt_exception();
}
const int framebuffer_width = 640;
const int framebuffer_height = 480;
const int tile_width = framebuffer_width / 32;
const int tile_height = framebuffer_height / 32;
constexpr uint32_t ta_alloc = 0
| ta_alloc_ctrl::pt_opb::no_list
| ta_alloc_ctrl::tm_opb::no_list
| ta_alloc_ctrl::t_opb::_32x4byte
| ta_alloc_ctrl::om_opb::no_list
| ta_alloc_ctrl::o_opb::no_list
;
constexpr int ta_cont_count = 1;
constexpr struct opb_size opb_size[ta_cont_count] = {
{
.opaque = 0,
.opaque_modifier = 0,
.translucent = 32 * 4,
.translucent_modifier = 0,
.punch_through = 0
}
};
static volatile int ta_in_use = 0;
static volatile int core_in_use = 0;
static volatile int next_frame = 0;
static volatile int framebuffer_ix = 0;
static volatile int next_frame_ix = 0;
static inline void pump_events(uint32_t istnrm)
{
if (istnrm & istnrm::v_blank_in) {
system.ISTNRM = istnrm::v_blank_in;
next_frame = 1;
holly.FB_R_SOF1 = texture_memory_alloc.framebuffer[next_frame_ix].start;
}
if (istnrm & istnrm::end_of_render_tsp) {
system.ISTNRM = istnrm::end_of_render_tsp
| istnrm::end_of_render_isp
| istnrm::end_of_render_video;
next_frame_ix = framebuffer_ix;
framebuffer_ix += 1;
if (framebuffer_ix >= 3) framebuffer_ix = 0;
core_in_use = 0;
}
if (istnrm & istnrm::end_of_transferring_translucent_list) {
system.ISTNRM = istnrm::end_of_transferring_translucent_list;
core_in_use = 1;
holly.FB_W_SOF1 = texture_memory_alloc.framebuffer[framebuffer_ix].start;
holly.STARTRENDER = 1;
ta_in_use = 0;
}
}
void vbr600()
{
uint32_t sr;
asm volatile ("stc sr,%0" : "=r" (sr));
sr |= sh::sr::imask(15);
asm volatile ("ldc %0,sr" : : "r" (sr));
if (sh7091.CCN.EXPEVT == 0 && sh7091.CCN.INTEVT == 0x320) {
uint32_t istnrm = system.ISTNRM;
uint32_t isterr = system.ISTERR;
if (isterr) {
serial::string("isterr: ");
serial::integer<uint32_t>(isterr);
if (isterr & 1) {
system.ISTERR = 1;
}
}
pump_events(istnrm);
sr &= ~sh::sr::imask(15);
asm volatile ("ldc %0,sr" : : "r" (sr));
return;
}
serial::string("vbr600\n");
interrupt_exception();
}
void global_polygon_type_0(ta_parameter_writer& writer,
uint32_t para_control_obj_control
)
{
const uint32_t parameter_control_word = para_control::para_type::polygon_or_modifier_volume
| obj_control::col_type::floating_color
| obj_control::gouraud
| para_control_obj_control
;
const uint32_t isp_tsp_instruction_word = isp_tsp_instruction_word::depth_compare_mode::greater_or_equal
| isp_tsp_instruction_word::culling_mode::no_culling
;
uint32_t tsp_instruction_word = tsp_instruction_word::fog_control::no_fog
| tsp_instruction_word::src_alpha_instr::one
| tsp_instruction_word::dst_alpha_instr::zero
| tsp_instruction_word::texture_shading_instruction::decal
;
uint32_t texture_control_word = 0;
writer.append<ta_global_parameter::polygon_type_0>() =
ta_global_parameter::polygon_type_0(parameter_control_word,
isp_tsp_instruction_word,
tsp_instruction_word,
texture_control_word,
0,
0);
}
void global_polygon_type_0_packed(ta_parameter_writer& writer,
uint32_t para_control_obj_control,
int ix
)
{
const uint32_t parameter_control_word = para_control::para_type::polygon_or_modifier_volume
| obj_control::col_type::packed_color
| obj_control::texture
| para_control_obj_control
;
const uint32_t isp_tsp_instruction_word = isp_tsp_instruction_word::depth_compare_mode::greater_or_equal
| isp_tsp_instruction_word::culling_mode::no_culling
;
uint32_t tsp_instruction_word = tsp_instruction_word::fog_control::no_fog
| tsp_instruction_word::src_alpha_instr::src_alpha
| tsp_instruction_word::dst_alpha_instr::inverse_src_alpha
| tsp_instruction_word::texture_shading_instruction::decal
| tsp_instruction_word::texture_u_size::from_int(32)
| tsp_instruction_word::texture_v_size::from_int(32)
| tsp_instruction_word::filter_mode::bilinear_filter
;
uint32_t texture_address = texture_memory_alloc.texture.start + (32 * 32 * 2) * ix;
uint32_t texture_control_word = texture_control_word::pixel_format::_1555
| texture_control_word::scan_order::twiddled
| texture_control_word::texture_address(texture_address / 8)
;
writer.append<ta_global_parameter::polygon_type_0>() =
ta_global_parameter::polygon_type_0(parameter_control_word,
isp_tsp_instruction_word,
tsp_instruction_word,
texture_control_word,
0,
0);
}
static inline void render_quad(ta_parameter_writer& writer,
vec3 ap,
vec3 bp,
vec3 cp,
vec3 dp,
vec3 ac,
vec3 bc,
vec3 cc,
vec3 dc)
{
if (ap.z < 0 || bp.z < 0 || cp.z < 0 || dp.z < 0)
return;
writer.append<ta_vertex_parameter::polygon_type_1>() =
ta_vertex_parameter::polygon_type_1(polygon_vertex_parameter_control_word(false),
ap.x, ap.y, ap.z,
1, ac.r, ac.g, ac.b);
writer.append<ta_vertex_parameter::polygon_type_1>() =
ta_vertex_parameter::polygon_type_1(polygon_vertex_parameter_control_word(false),
bp.x, bp.y, bp.z,
1, bc.r, bc.g, bc.b);
writer.append<ta_vertex_parameter::polygon_type_1>() =
ta_vertex_parameter::polygon_type_1(polygon_vertex_parameter_control_word(false),
dp.x, dp.y, dp.z,
1, dc.r, dc.g, dc.b);
writer.append<ta_vertex_parameter::polygon_type_1>() =
ta_vertex_parameter::polygon_type_1(polygon_vertex_parameter_control_word(true),
cp.x, cp.y, cp.z,
1, cc.r, cc.g, cc.b);
}
static inline void render_quad2(ta_parameter_writer& writer,
vec3 ap,
vec3 bp,
vec3 cp,
vec3 dp)
{
if (ap.z < 0 || bp.z < 0 || cp.z < 0 || dp.z < 0)
return;
writer.append<ta_vertex_parameter::polygon_type_3>() =
ta_vertex_parameter::polygon_type_3(polygon_vertex_parameter_control_word(false),
ap.x, ap.y, ap.z,
0, 0,
0, 0);
writer.append<ta_vertex_parameter::polygon_type_3>() =
ta_vertex_parameter::polygon_type_3(polygon_vertex_parameter_control_word(false),
bp.x, bp.y, bp.z,
0, 1,
0, 0);
writer.append<ta_vertex_parameter::polygon_type_3>() =
ta_vertex_parameter::polygon_type_3(polygon_vertex_parameter_control_word(false),
dp.x, dp.y, dp.z,
1, 0,
0, 0);
writer.append<ta_vertex_parameter::polygon_type_3>() =
ta_vertex_parameter::polygon_type_3(polygon_vertex_parameter_control_word(true),
cp.x, cp.y, cp.z,
1, 1,
0, 0);
}
static inline vec3 screen_transform(vec3 v)
{
float dim = 480 / 2.0;
return {
v.x / (1.f * v.z) * dim + 640 / 2.0f,
v.y / (1.f * v.z) * dim + 480 / 2.0f,
1 / v.z,
};
}
static int last_value = -1;
static inline void transfer_knot_face(ta_parameter_writer& writer, const grid * grid, int r0, int r1, int s0, int s1)
{
// x, y
int value = grid_get(grid, r0, s0);
if (value > 0)
value = 0;
if (value < 0)
value = 1;
if (last_value != value) {
global_polygon_type_0_packed(writer,
para_control::list_type::translucent,
value);
last_value = value;
}
render_quad2(writer,
t_knot_ring[r0][s0],
t_knot_ring[r0][s1],
t_knot_ring[r1][s1],
t_knot_ring[r1][s0]);
}
static inline void transfer_knot_inner(ta_parameter_writer& writer, const grid * grid, int r0, int r1)
{
for (int s0 = 0; s0 < knot_segments - 1; s0++) {
int s1 = s0 + 1;
transfer_knot_face(writer, grid, r0, r1, s0, s1);
}
transfer_knot_face(writer, grid, r0, r1, knot_segments - 1, 0);
}
void transfer_knot(ta_parameter_writer& writer, mat4x4& trans, const grid * grid)
{
for (int i = 0; i < knot_rings; i++) {
//t_knot_center[i] = screen_transform(trans * _knot_center[i]);
for (int j = 0; j < knot_segments; j++) {
t_knot_ring[i][j] = screen_transform(trans * _knot_ring[i][j]);
}
}
for (int r0 = 0; r0 < knot_rings - 1; r0++) {
int r1 = r0 + 1;
transfer_knot_inner(writer, grid, r0, r1);
}
transfer_knot_inner(writer, grid, knot_rings - 1, 0);
}
void transfer_grid(ta_parameter_writer& writer, const grid * grid)
{
float dim = 10;
for (int y = 0; y < grid->height; y++) {
for (int x = 0; x < grid->width; x++) {
int value = grid_get(grid, x, y);
if (value == 0)
continue;
float fx = x;
float fx1 = x + 1;
float fy = y;
float fy1 = y + 1;
vec3 a = {dim * fx , dim * fy , 0.001f};
vec3 b = {dim * fx1, dim * fy , 0.001f};
vec3 c = {dim * fx1, dim * fy1, 0.001f};
vec3 d = {dim * fx , dim * fy1, 0.001f};
mat4x4 r = translate((vec3){20, 20, 0});
vec3 color;
if (value > 0)
color = {1, 1, 1};
else {
color = {0, 0, 1};
}
render_quad(writer,
r * a,
r * b,
r * c,
r * d,
color,
color,
color,
color);
}
}
}
void transfer_scene(ta_parameter_writer& writer, grid * grid, mat4x4& trans)
{
global_polygon_type_0(writer,
para_control::list_type::translucent);
transfer_grid(writer, grid);
last_value = -1;
transfer_knot(writer, trans, grid);
writer.append<ta_global_parameter::end_of_list>() =
ta_global_parameter::end_of_list(para_control::para_type::end_of_list);
}
void transfer_ta_fifo_texture_memory_32byte(void * dst, const void * src, int length)
{
assert((((int)dst) & 31) == 0);
assert((((int)length) & 31) == 0);
uint32_t out_addr = (uint32_t)dst;
sh7091.CCN.QACR0 = ((reinterpret_cast<uint32_t>(out_addr) >> 24) & 0b11100);
sh7091.CCN.QACR1 = ((reinterpret_cast<uint32_t>(out_addr) >> 24) & 0b11100);
volatile uint32_t * base = &store_queue[(out_addr & 0x03ffffe0) / 4];
const uint32_t * src32 = reinterpret_cast<const uint32_t *>(src);
length = (length + 31) & ~31; // round up to nearest multiple of 32
while (length > 0) {
base[0] = src32[0];
base[1] = src32[1];
base[2] = src32[2];
base[3] = src32[3];
base[4] = src32[4];
base[5] = src32[5];
base[6] = src32[6];
base[7] = src32[7];
asm volatile ("pref @%0"
: // output
: "r" (&base[0]) // input
: "memory");
length -= 32;
base += 8;
src32 += 8;
}
}
void transfer_texture()
{
const void * start[5] = {
(void *)&_binary_texture_game_of_life_dead_data_start,
(void *)&_binary_texture_game_of_life_live1_data_start,
(void *)&_binary_texture_game_of_life_live2_data_start,
(void *)&_binary_texture_game_of_life_live3_data_start,
(void *)&_binary_texture_game_of_life_live4_data_start,
};
for (uint32_t i = 0; i < (sizeof (start)) / (sizeof (start[0])); i++) {
uint32_t offset = texture_memory_alloc.texture.start + (32 * 32 * 2) * i;
void * dst = reinterpret_cast<void *>(&ta_fifo_texture_memory[offset / 4]);
const void * src = start[i];
uint32_t size = 32 * 32 * 2;
transfer_ta_fifo_texture_memory_32byte(dst, src, size);
}
}
void transfer_textures()
{
system.LMMODE0 = 0; // 64-bit address space
system.LMMODE1 = 0; // 64-bit address space
transfer_texture();
}
static inline mat4x4 update_analog(const mat4x4& screen_trans)
{
const float l_ = static_cast<float>(data[0].analog_coordinate_axis[0]) * (1.f / 255.f);
const float r_ = static_cast<float>(data[0].analog_coordinate_axis[1]) * (1.f / 255.f);
const float x_ = static_cast<float>(data[0].analog_coordinate_axis[2] - 0x80) / 127.f;
const float y_ = static_cast<float>(data[0].analog_coordinate_axis[3] - 0x80) / 127.f;
float x = 0.05f * -x_;
float y = 0.05f * y_;
float z = 1.0 + (-0.01f * r_ + 0.01f * l_);
mat4x4 s = scale((vec3){z, z, z});
mat4x4 ry = rotate_x(x);
mat4x4 rz = rotate_z(y);
return screen_trans * s * ry * rz;
}
static inline void update_digital(snake * snake)
{
int ra = ft0::data_transfer::digital_button::ra(data[0].digital_button) == 0;
int la = ft0::data_transfer::digital_button::la(data[0].digital_button) == 0;
int da = ft0::data_transfer::digital_button::da(data[0].digital_button) == 0;
int ua = ft0::data_transfer::digital_button::ua(data[0].digital_button) == 0;
if (ra) {
snake->direction = RIGHT;
}
if (la) {
snake->direction = LEFT;
}
if (ua) {
snake->direction = UP;
}
if (da) {
snake->direction = DOWN;
}
}
static inline vec3 lerp(vec3 a, vec3 b, float t)
{
return a + (b - a) * t;
}
uint8_t __attribute__((aligned(32))) ta_parameter_buf[1024 * 1024 * 2];
int main()
{
sh7091.TMU.TSTR = 0; // stop all timers
sh7091.TMU.TOCR = tmu::tocr::tcoe::tclk_is_external_clock_or_input_capture;
sh7091.TMU.TCR0 = tmu::tcr0::tpsc::p_phi_256; // 256 / 50MHz = 5.12 μs ; underflows in ~1 hour
sh7091.TMU.TCOR0 = 0xffff'ffff;
sh7091.TMU.TCNT0 = 0xffff'ffff;
sh7091.TMU.TSTR = tmu::tstr::str0::counter_start;
serial::init(0);
interrupt_init();
holly.SOFTRESET = softreset::pipeline_soft_reset
| softreset::ta_soft_reset;
holly.SOFTRESET = 0;
core_init();
transfer_textures();
holly.FPU_SHAD_SCALE = fpu_shad_scale::simple_shadow_enable::parameter_selection_volume_mode;
system.IML6NRM = istnrm::end_of_render_tsp
| istnrm::v_blank_in
| istnrm::end_of_transferring_translucent_list;
region_array_multipass(tile_width,
tile_height,
opb_size,
ta_cont_count,
texture_memory_alloc.region_array.start,
texture_memory_alloc.object_list.start);
background_parameter2(texture_memory_alloc.background[0].start,
0xff000000);
video_output::set_mode_vga();
ta_parameter_writer writer = ta_parameter_writer(ta_parameter_buf, (sizeof (ta_parameter_buf)));
{
uint32_t region_array_start = texture_memory_alloc.region_array.start;
uint32_t isp_tsp_parameters_start = texture_memory_alloc.isp_tsp_parameters.start;
uint32_t background_start = texture_memory_alloc.background[0].start;
holly.REGION_BASE = region_array_start;
holly.PARAM_BASE = isp_tsp_parameters_start;
uint32_t background_offset = background_start - isp_tsp_parameters_start;
holly.ISP_BACKGND_T = isp_backgnd_t::tag_address(background_offset / 4)
| isp_backgnd_t::tag_offset(0)
| isp_backgnd_t::skip(1);
holly.ISP_BACKGND_D = _i(1.f/100000.f);
holly.FB_W_CTRL = fb_w_ctrl::fb_dither
| fb_w_ctrl::fb_packmode::_565_rgb_16bit;
uint32_t bytes_per_pixel = 2;
holly.FB_W_LINESTRIDE = (framebuffer_width * bytes_per_pixel) / 8;
}
const int max_width = max_knot_rings;
const int max_height = max_knot_segments;
static int grid_a[max_width * max_height] = {};
static int grid_b[max_width * max_height] = {};
grid grid = {
.width = knot_rings,
.height = knot_segments,
.generation = 1,
.data = {grid_a, grid_b},
};
for (int i = 0; i < 8; i++) {
seed_grid(&grid, 32 * i, 0);
}
snake snake;
grid.generation = 0;
snake_init(&grid, &snake, 5, 5);
int tick = 0;
mat4x4 screen_trans = {
1, 0, 0, 0,
0, 0, -1, 0,
0, 1, 0, 0,
0, 0, 0, 1,
};
knot_edges(knot_rings, knot_segments);
do_get_condition();
while (1) {
maple::dma_wait_complete();
do_get_condition();
//screen_trans = update_analog(screen_trans);
update_digital(&snake);
constexpr int ticks_per_animation_frame = 16;
if ((tick & (ticks_per_animation_frame - 1)) == 0) {
grid_generation(&grid);
snake_move(&grid, &snake, false);
}
/*
constexpr float tick_div = 1.0f / (float)ticks_per_animation_frame;
int anim_tick = -tick;
int anim_frame = anim_tick / ticks_per_animation_frame;
float t = (anim_tick - (anim_frame * ticks_per_animation_frame)) * tick_div;
int eye0 = (anim_frame + 0) & (knot_rings - 1);
int eye1 = (anim_frame + 1) & (knot_rings - 1);
int center0 = (anim_frame + 1) & (knot_rings - 1);
int center1 = (anim_frame + 2) & (knot_rings - 1);
vec3 eye = lerp(_knot_center[eye0], _knot_center[eye1], t);
vec3 center = lerp(_knot_center[center0], _knot_center[center1], t);
vec3 up = lerp(_knot_ring[eye0][0], _knot_ring[eye1][0], t);
*/
int ex = (snake.head.x - 10) & (grid.width - 1);
int cx = (snake.head.x + 0) & (grid.width - 1);
int y = (snake.head.y) & (grid.height - 1);
vec3 up = -_knot_ring[cx][snake.head.y];
vec3 eye = _knot_center[ex];
vec3 center = -_knot_center[cx];
screen_trans = look_at(eye, center, up);
writer.offset = 0;
transfer_scene(writer, &grid, screen_trans);
tick += 1;
if ((tick & 3) == 0) {
//grid_generation(&grid);
}
while (ta_in_use);
while (core_in_use);
ta_in_use = 1;
ta_polygon_converter_init2(texture_memory_alloc.isp_tsp_parameters.start,
texture_memory_alloc.isp_tsp_parameters.end,
texture_memory_alloc.object_list.start,
texture_memory_alloc.object_list.end,
opb_size[0].total(),
ta_alloc,
tile_width,
tile_height);
ta_polygon_converter_writeback(writer.buf, writer.offset);
ta_polygon_converter_transfer(writer.buf, writer.offset);
while (next_frame == 0);
next_frame = 0;
}
}