From the GCC manual. > GCC permits a C structure to have no members: struct empty { }; > The structure has size zero. In C++, empty structures are part of the > language. G++ treats empty structures as if they had a single member of type > char. I was not aware of the different behavior in C++. This fixes every maple example--most were broken for multiple reasons, including this one. This also enables SH4 caching. This includes linking code/data into the P1 area (previously this was not the case). The maple examples (which indeed involve much use of DMA) require much work to successfully work with the operand and copyback caches. The vibration example currently is the most complete, though I should consider more on how I want to structure maple response operand cache invalidation more generally.
218 lines
6.2 KiB
C++
218 lines
6.2 KiB
C++
#include <cstdint>
|
|
|
|
#include "align.hpp"
|
|
|
|
#include "vga.hpp"
|
|
#include "holly/holly.hpp"
|
|
#include "holly/core.hpp"
|
|
#include "holly/core_bits.hpp"
|
|
#include "holly/ta_fifo_polygon_converter.hpp"
|
|
#include "holly/ta_parameter.hpp"
|
|
#include "holly/ta_global_parameter.hpp"
|
|
#include "holly/ta_vertex_parameter.hpp"
|
|
#include "holly/ta_bits.hpp"
|
|
#include "holly/isp_tsp.hpp"
|
|
#include "holly/region_array.hpp"
|
|
#include "holly/background.hpp"
|
|
#include "holly/texture_memory_alloc.hpp"
|
|
#include "memorymap.hpp"
|
|
|
|
#include "geometry/geometry.hpp"
|
|
#include "geometry/cube.hpp"
|
|
#include "math/vec4.hpp"
|
|
|
|
constexpr float half_degree = 0.01745329f / 2;
|
|
|
|
vec3 rotate(const vec3& vertex, float theta)
|
|
{
|
|
float x = vertex.x;
|
|
float y = vertex.y;
|
|
float z = vertex.z;
|
|
float t;
|
|
|
|
t = y * cos(theta) - z * sin(theta);
|
|
z = y * sin(theta) + z * cos(theta);
|
|
y = t;
|
|
|
|
float theta2 = 3.14 * sin(theta / 2);
|
|
|
|
t = x * cos(theta2) - z * sin(theta2);
|
|
z = x * sin(theta2) + z * cos(theta2);
|
|
x = t;
|
|
|
|
return vec3(x, y, z);
|
|
}
|
|
|
|
void transform(ta_parameter_writer& parameter,
|
|
const uint32_t face_ix,
|
|
const float theta,
|
|
const vec3 lights[2])
|
|
{
|
|
const uint32_t parameter_control_word = para_control::para_type::polygon_or_modifier_volume
|
|
| para_control::list_type::opaque
|
|
| obj_control::col_type::floating_color
|
|
| obj_control::gouraud;
|
|
|
|
const uint32_t isp_tsp_instruction_word = isp_tsp_instruction_word::depth_compare_mode::greater
|
|
| isp_tsp_instruction_word::culling_mode::cull_if_positive;
|
|
|
|
const uint32_t tsp_instruction_word = tsp_instruction_word::src_alpha_instr::one
|
|
| tsp_instruction_word::dst_alpha_instr::zero
|
|
| tsp_instruction_word::fog_control::no_fog;
|
|
|
|
parameter.append<ta_global_parameter::polygon_type_0>() =
|
|
ta_global_parameter::polygon_type_0(parameter_control_word,
|
|
isp_tsp_instruction_word,
|
|
tsp_instruction_word,
|
|
0, // texture_control_word
|
|
0, // data_size_for_sort_dma
|
|
0 // next_address_for_sort_dma
|
|
);
|
|
auto& face = cube::faces[face_ix];
|
|
|
|
constexpr uint32_t strip_length = 3;
|
|
for (uint32_t i = 0; i < strip_length; i++) {
|
|
bool end_of_strip = i == strip_length - 1;
|
|
|
|
// world transform
|
|
uint32_t vertex_ix = face[i].vertex;
|
|
auto& vertex = cube::vertices[vertex_ix];
|
|
auto point = rotate(vertex, theta);
|
|
|
|
// lighting transform
|
|
uint32_t normal_ix = face[i].normal;
|
|
auto& normal = cube::normals[normal_ix];
|
|
auto n = rotate(normal, theta);
|
|
|
|
vec4 color = {0.3, 0.3, 0.3, 1.0};
|
|
|
|
// intensity calculation
|
|
{
|
|
auto l = lights[0] - point;
|
|
auto n_dot_l = dot(n, l);
|
|
if (n_dot_l > 0) {
|
|
color.x += 0.35 * n_dot_l / (length(n) * length(l));
|
|
}
|
|
}
|
|
|
|
{
|
|
auto l = lights[1] - point;
|
|
auto n_dot_l = dot(n, l);
|
|
if (n_dot_l > 0) {
|
|
color.y += 0.35 * n_dot_l / (length(n) * length(l));
|
|
}
|
|
}
|
|
|
|
float x = point.x;
|
|
float y = point.y;
|
|
float z = point.z;
|
|
|
|
// camera transform
|
|
z += 3;
|
|
|
|
// perspective
|
|
x = x / z;
|
|
y = y / z;
|
|
|
|
// screen space transform
|
|
x *= 240.f;
|
|
y *= 240.f;
|
|
x += 320.f;
|
|
y += 240.f;
|
|
z = 1 / z;
|
|
|
|
parameter.append<ta_vertex_parameter::polygon_type_1>() =
|
|
ta_vertex_parameter::polygon_type_1(polygon_vertex_parameter_control_word(end_of_strip),
|
|
x, y, z,
|
|
color.w, // alpha
|
|
color.x, // r
|
|
color.y, // g
|
|
color.z // b
|
|
);
|
|
}
|
|
}
|
|
|
|
void init_texture_memory(const struct opb_size& opb_size)
|
|
{
|
|
auto mem = reinterpret_cast<volatile texture_memory_alloc *>(texture_memory32);
|
|
|
|
background_parameter(mem->background, 0xff220000);
|
|
|
|
region_array2(mem->region_array,
|
|
(offsetof (struct texture_memory_alloc, object_list)),
|
|
640 / 32, // width
|
|
480 / 32, // height
|
|
opb_size
|
|
);
|
|
}
|
|
|
|
uint32_t _ta_parameter_buf[((32 * (5 * 6 + 1)) + 32) / 4];
|
|
|
|
void main()
|
|
{
|
|
vga();
|
|
|
|
// The address of `ta_parameter_buf` must be a multiple of 32 bytes.
|
|
// This is mandatory for ch2-dma to the ta fifo polygon converter.
|
|
uint32_t * ta_parameter_buf = align_32byte(_ta_parameter_buf);
|
|
|
|
constexpr uint32_t ta_alloc = ta_alloc_ctrl::pt_opb::no_list
|
|
| ta_alloc_ctrl::tm_opb::no_list
|
|
| ta_alloc_ctrl::t_opb::no_list
|
|
| ta_alloc_ctrl::om_opb::no_list
|
|
| ta_alloc_ctrl::o_opb::_16x4byte;
|
|
|
|
constexpr struct opb_size opb_size = { .opaque = 16 * 4
|
|
, .opaque_modifier = 0
|
|
, .translucent = 0
|
|
, .translucent_modifier = 0
|
|
, .punch_through = 0
|
|
};
|
|
|
|
holly.SOFTRESET = softreset::pipeline_soft_reset
|
|
| softreset::ta_soft_reset;
|
|
holly.SOFTRESET = 0;
|
|
|
|
core_init();
|
|
init_texture_memory(opb_size);
|
|
|
|
uint32_t frame_ix = 0;
|
|
constexpr uint32_t num_frames = 1;
|
|
|
|
float theta = 0;
|
|
vec3 lights[2] = {
|
|
{0.f, 0.f, -4.f},
|
|
{0.f, 0.f, 0.f},
|
|
};
|
|
|
|
while (1) {
|
|
ta_polygon_converter_init(opb_size.total(),
|
|
ta_alloc,
|
|
640 / 32,
|
|
480 / 32);
|
|
|
|
//lights[0].x = cos(theta) * 10;
|
|
//lights[0].z = sin(theta) * 10;
|
|
|
|
//lights[1].x = cos(theta + half_degree * 90.f) * 10;
|
|
//lights[1].z = sin(theta + half_degree * 90.f) * 10;
|
|
|
|
auto parameter = ta_parameter_writer(ta_parameter_buf);
|
|
for (uint32_t i = 0; i < cube::num_faces; i++) {
|
|
transform(parameter, i, theta, lights);
|
|
}
|
|
parameter.append<ta_global_parameter::end_of_list>() = ta_global_parameter::end_of_list(para_control::para_type::end_of_list);
|
|
ta_polygon_converter_transfer(ta_parameter_buf, parameter.offset);
|
|
ta_wait_opaque_list();
|
|
core_start_render(frame_ix, num_frames);
|
|
core_wait_end_of_render_video();
|
|
|
|
while (!spg_status::vsync(holly.SPG_STATUS));
|
|
core_flip(frame_ix, num_frames);
|
|
while (spg_status::vsync(holly.SPG_STATUS));
|
|
|
|
theta += half_degree;
|
|
frame_ix += 1;
|
|
}
|
|
}
|