#include #include #include "align.hpp" #include "holly/video_output.hpp" #include "holly/holly.hpp" #include "holly/core.hpp" #include "holly/core_bits.hpp" #include "holly/ta_fifo_polygon_converter.hpp" #include "holly/ta_parameter.hpp" #include "holly/ta_vertex_parameter.hpp" #include "holly/ta_global_parameter.hpp" #include "holly/ta_bits.hpp" #include "holly/isp_tsp.hpp" #include "holly/region_array.hpp" #include "holly/background.hpp" #include "holly/texture_memory_alloc.hpp" #include "memorymap.hpp" #include "geometry/triangle.hpp" #include "geometry/circle.hpp" #include "math/vec4.hpp" #include "math/math.hpp" #include "math/geometry.hpp" #include "maple/maple.hpp" #include "maple/maple_impl.hpp" #include "maple/maple_bus_bits.hpp" #include "maple/maple_bus_commands.hpp" #include "maple/maple_bus_ft0.hpp" #include "sh7091/serial.hpp" uint32_t _command_buf[(1024 + 32) / 4]; uint32_t _receive_buf[(1024 + 32) / 4]; static ft0::data_transfer::data_format data[4]; void do_get_condition(uint32_t * command_buf, uint32_t * receive_buf) { using command_type = get_condition; using response_type = data_transfer; get_condition::data_fields data_fields = { .function_type = std::byteswap(function_type::controller) }; const uint32_t command_size = maple::init_host_command_all_ports(command_buf, receive_buf, data_fields); using host_response_type = struct maple::command_response; auto host_response = reinterpret_cast(receive_buf); maple::dma_start(command_buf, command_size, receive_buf, maple::sizeof_command(host_response)); for (uint8_t port = 0; port < 4; port++) { auto& bus_data = host_response[port].bus_data; if (bus_data.command_code != response_type::command_code) { return; } auto& data_fields = bus_data.data_fields; if ((data_fields.function_type & std::byteswap(function_type::controller)) == 0) { return; } data[port].analog_axis_1 = data_fields.data.analog_axis_1; data[port].analog_axis_2 = data_fields.data.analog_axis_2; data[port].analog_axis_3 = data_fields.data.analog_axis_3; data[port].analog_axis_4 = data_fields.data.analog_axis_4; } } constexpr vec3 colors[] = { {1.f, 0.5f, 0.f}, {0.f, 1.0f, 0.f}, {0.f, 0.5f, 1.f}, {1.f, 0.0f, 1.f}, }; void transform1(ta_parameter_writer& parameter, const vec3& v, const vec3& c, bool end_of_strip) { float x = v.x; float y = v.y; float z = v.z; // camera transform z += 1; // screen space transform x *= 240.f; y *= 240.f; x += 320.f; y += 240.f; z = 1 / z; parameter.append() = ta_vertex_parameter::polygon_type_1(polygon_vertex_parameter_control_word(end_of_strip), x, y, z, 1.0f, // alpha c.r, c.g, c.b ); } void transform(ta_parameter_writer& parameter, const vec3 * vertices, const face_vtn& face, const vec4& color, const vec3& position, const float theta, const bool enable_clipping ) { const uint32_t parameter_control_word = para_control::para_type::polygon_or_modifier_volume | para_control::list_type::opaque | obj_control::col_type::floating_color | obj_control::gouraud; const uint32_t isp_tsp_instruction_word = isp_tsp_instruction_word::depth_compare_mode::greater | isp_tsp_instruction_word::culling_mode::no_culling; const uint32_t tsp_instruction_word = tsp_instruction_word::src_alpha_instr::one | tsp_instruction_word::dst_alpha_instr::zero | tsp_instruction_word::fog_control::no_fog; constexpr uint32_t strip_length = 3; vec3 points[strip_length]; // object transform and clip for (uint32_t i = 0; i < strip_length; i++) { uint32_t vertex_ix = face[i].vertex; auto vertex = vertices[vertex_ix]; vertex = (vertex * 0.5f); // rotate 90° around the X axis //float x = vertex.x; //float y = vertex.z; //float z = vertex.y; float x = vertex.x * cos(theta) - vertex.z * sin(theta); float y = vertex.x * sin(theta) + vertex.z * cos(theta); float z = vertex.y; // object transform x += position.x; // object space y += position.y; // object space z += position.z; // object space // clip points[i] = vec3(x, y, z); } const vec3 plane_point = {0.f, 0.f, 0.f}; const vec3 plane_normal = {-1.f, 0.f, 0.f}; vec3 output[4]; int output_length = geometry::clip_polygon<3>(output, plane_point, plane_normal, &points[0]); if (output_length >= 3) { parameter.append() = ta_global_parameter::polygon_type_0(parameter_control_word, isp_tsp_instruction_word, tsp_instruction_word, 0, // texture_control_word 0, // data_size_for_sort_dma 0 // next_address_for_sort_dma ); transform1(parameter, output[0], colors[0], false); transform1(parameter, output[1], colors[1], false); transform1(parameter, output[2], colors[2], true); } if (output_length >= 4) { parameter.append() = ta_global_parameter::polygon_type_0(parameter_control_word, isp_tsp_instruction_word, tsp_instruction_word, 0, // texture_control_word 0, // data_size_for_sort_dma 0 // next_address_for_sort_dma ); transform1(parameter, output[0], colors[0], false); transform1(parameter, output[2], colors[2], false); transform1(parameter, output[3], colors[3], true); } /* A B D C */ } void init_texture_memory(const struct opb_size& opb_size) { region_array2(640 / 32, // width 480 / 32, // height opb_size ); background_parameter(0xff220000); } uint32_t _ta_parameter_buf[((32 * 8192) + 32) / 4]; void main() { uint32_t * command_buf = align_32byte(_command_buf); uint32_t * receive_buf = align_32byte(_receive_buf); video_output::set_mode_vga(); // The address of `ta_parameter_buf` must be a multiple of 32 bytes. // This is mandatory for ch2-dma to the ta fifo polygon converter. uint32_t * ta_parameter_buf = align_32byte(_ta_parameter_buf); constexpr uint32_t ta_alloc = ta_alloc_ctrl::pt_opb::no_list | ta_alloc_ctrl::tm_opb::no_list | ta_alloc_ctrl::t_opb::no_list | ta_alloc_ctrl::om_opb::no_list | ta_alloc_ctrl::o_opb::_16x4byte; constexpr struct opb_size opb_size = { .opaque = 16 * 4 , .opaque_modifier = 0 , .translucent = 0 , .translucent_modifier = 0 , .punch_through = 0 }; holly.SOFTRESET = softreset::pipeline_soft_reset | softreset::ta_soft_reset; holly.SOFTRESET = 0; core_init(); init_texture_memory(opb_size); uint32_t frame_ix = 0; float theta = 0; float x_pos = 0; float y_pos = 0; while (1) { do_get_condition(command_buf, receive_buf); ta_polygon_converter_init(opb_size.total(), ta_alloc, 640 / 32, 480 / 32); const float l_ = static_cast(data[0].analog_axis_1) * (1.f / 255.f); const float r_ = static_cast(data[0].analog_axis_2) * (1.f / 255.f); const float t_ = ((l_ > r_) ? l_ : -r_) * 3.14f / 2.f; if (t_ > theta) theta += (0.04f * ((t_ - theta) * (t_ - theta))); else theta -= (0.04f * ((t_ - theta) * (t_ - theta))); const float x_ = static_cast(data[0].analog_axis_3 - 0x80) / 127.f; const float y_ = static_cast(data[0].analog_axis_4 - 0x80) / 127.f; if (x_ > x_pos) x_pos += (0.02f * ((x_ - x_pos) * (x_ - x_pos))); else x_pos -= (0.02f * ((x_ - x_pos) * (x_ - x_pos))); if (y_ > y_pos) y_pos += (0.02f * ((y_ - y_pos) * (y_ - y_pos))); else y_pos -= (0.02f * ((y_ - y_pos) * (y_ - y_pos))); auto parameter = ta_parameter_writer(ta_parameter_buf); for (uint32_t i = 0; i < circle::num_faces; i++) { transform(parameter, circle::vertices, circle::faces[i], {1.0f, 1.0f, 0.0f, 0.0f}, // color {x_pos * 2, y_pos * 2, 0.0f}, // position theta, true // clipping ); } parameter.append() = ta_global_parameter::end_of_list(para_control::para_type::end_of_list); ta_polygon_converter_transfer(ta_parameter_buf, parameter.offset); ta_wait_opaque_list(); core_start_render(frame_ix); core_wait_end_of_render_video(); while (!spg_status::vsync(holly.SPG_STATUS)); core_flip(frame_ix); while (spg_status::vsync(holly.SPG_STATUS)); frame_ix = (frame_ix + 1) & 1;; } }