#include #include "holly/background.hpp" #include "holly/core.hpp" #include "holly/core_bits.hpp" #include "holly/holly.hpp" #include "holly/isp_tsp.hpp" #include "holly/region_array.hpp" #include "holly/ta_bits.hpp" #include "holly/ta_fifo_polygon_converter.hpp" #include "holly/ta_global_parameter.hpp" #include "holly/ta_parameter.hpp" #include "holly/ta_vertex_parameter.hpp" #include "holly/texture_memory_alloc7.hpp" #include "holly/video_output.hpp" #include "systembus.hpp" #include "systembus_bits.hpp" #include "maple/maple.hpp" #include "maple/maple_host_command_writer.hpp" #include "maple/maple_bus_bits.hpp" #include "maple/maple_bus_commands.hpp" #include "maple/maple_bus_ft0.hpp" #include "memorymap.hpp" #include "sh7091/sh7091.hpp" #include "sh7091/sh7091_bits.hpp" #include "sh7091/serial.hpp" #include "printf/printf.h" #include "math/float_types.hpp" #include "math/transform.hpp" #include "interrupt.hpp" #include "assert.h" #include "texture/game_of_life/dead.data.h" #include "texture/game_of_life/live1.data.h" #include "texture/game_of_life/live2.data.h" #include "texture/game_of_life/live3.data.h" #include "texture/game_of_life/live4.data.h" const int max_knot_segments = 32; const int max_knot_rings = 256; int knot_segments = 32; int knot_rings = 256; //int knot_rings = 32; vec3 _knot_center[max_knot_rings]; vec3 _knot_ring[max_knot_rings][max_knot_segments]; //vec3 t_knot_center[max_knot_rings]; vec3 t_knot_ring[max_knot_rings][max_knot_segments]; static inline vec3 knot(const float t) { float x = sin(t) + 2 * sin(2 * t); float y = cos(t) - 2 * cos(2 * t); float z = -sin(3 * t); return {x, y, z}; } static inline vec3 rodrigues_rotation(const vec3 v, const vec3 k, const float t) { return v * cos(t) + cross(k, v) * sin(t) + k * dot(k, v) * (1 - cos(t)); } static inline void radial_segments(const vec3 a, const vec3 n0, const vec3 n, const int segments, vec3 * radial_surface) { for (int i = 0; i < segments; i++) { float t = ((float)i / (float)segments) * 2.f * pi; vec3 rn = rodrigues_rotation(n, n0, t); rn = normalize(rn); radial_surface[i] = a + rn * 0.6f; } } static inline vec3 knot_center(const float i, const float rings) { float t = (i / rings) * 2.f * pi; vec3 center = knot(t); return center; } void knot_edges(const int rings, const int segments) { for (int i = 0; i < rings; i++) { vec3 center = knot_center(i, rings); _knot_center[i] = center; } for (int i = 0; i < rings; i++) { int ip = (i + 1) & (rings - 1); int im = (i - 1) & (rings - 1); const vec3& a = _knot_center[i]; const vec3& b = _knot_center[ip]; const vec3& c = _knot_center[im]; vec3 n0 = ((b - a) + (a - c)) * 0.5f; n0 = normalize(n0); vec3 n = cross(n0, -a); n = normalize(n); radial_segments(a, n0, n, segments, &_knot_ring[i][0]); } } struct grid { int width; int height; int generation; int * data[2]; }; static inline int grid_get(grid const * const grid, int x, int y) { x = x & (grid->width - 1); y = y & (grid->height - 1); int gen = grid->generation & 1; return grid->data[gen][y * grid->width + x]; } static inline void grid_put_p(grid * const grid, int x, int y, int value) { x = x & (grid->width - 1); y = y & (grid->height - 1); int gen = grid->generation & 1; grid->data[gen][y * grid->width + x] = value; } static inline void grid_put(grid * const grid, int x, int y, int value) { x = x & (grid->width - 1); y = y & (grid->height - 1); int gen = !(grid->generation & 1); grid->data[gen][y * grid->width + x] = value; } static inline int count_neighbors(grid const * const grid, int x, int y) { int count = 0; count += grid_get(grid, x - 1, y - 1) > 0; count += grid_get(grid, x - 0, y - 1) > 0; count += grid_get(grid, x + 1, y - 1) > 0; count += grid_get(grid, x - 1, y - 0) > 0; //count += grid_get(grid, x - 0, y - 0) > 0; count += grid_get(grid, x + 1, y - 0) > 0; count += grid_get(grid, x - 1, y + 1) > 0; count += grid_get(grid, x - 0, y + 1) > 0; count += grid_get(grid, x + 1, y + 1) > 0; return count; } static inline void apply_rule(grid * grid, int x, int y) { int live = grid_get(grid, x, y); int count = count_neighbors(grid, x, y); if (live < 0) { // do nothing } else if (live > 0) { if (count < 2) live = 0; else if (count > 3) live = 0; else if (live < 4) live += 1; } else { // live == 0 if (count == 3) live = 1; } grid_put(grid, x, y, live); } void grid_generation(grid * grid) { for (int y = 0; y < grid->height; y++) { for (int x = 0; x < grid->width; x++) { apply_rule(grid, x, y); } } grid->generation += 1; } void seed_grid(grid * grid, int xo, int yo) { static const uint8_t seed[] = { 0, 1, 0, 1, 1, 0, 0, 1, 1, }; const int seed_width = 3; const int seed_height = 3; for (int y = 0; y < grid->height; y++) { for (int x = 0; x < grid->width; x++) { if (y < seed_height && x < seed_width) { grid_put(grid, xo + x, yo + y, seed[y * seed_width + x]); } } } } // cell points to next cell struct cell { int x; int y; }; cell snake_unpack_cell(int a) { assert(a < 0); int x = ((uint32_t)a >> 0) & 0xff; int y = ((uint32_t)a >> 8) & 0xff; return {x, y}; } int snake_pack_cell(cell c) { uint32_t v = (1 << 31) | (((uint32_t)c.x & 0xff) << 0) | (((uint32_t)c.y & 0xff) << 8); return v; } enum direction : int { UP, DOWN, LEFT, RIGHT }; struct snake { cell head; cell tail; enum direction direction; }; static inline cell move(cell p, int d) { switch (d) { case UP: return {p.x, p.y - 1}; case DOWN: return {p.x, p.y + 1}; case LEFT: return {p.x - 1, p.y}; case RIGHT: return {p.x + 1, p.y}; } assert(false); } void snake_move(grid * grid, snake * snake, bool force_grow) { cell head = move(snake->head, snake->direction); int live = grid_get(grid, head.x, head.y); grid_put_p(grid, head.x, head.y, -1); grid_put_p(grid, snake->head.x, snake->head.y, snake_pack_cell(head)); snake->head.x = head.x; snake->head.y = head.y; int grow = live > 0 || force_grow; if (!grow) { cell tail = snake_unpack_cell(grid_get(grid, snake->tail.x, snake->tail.y)); grid_put_p(grid, snake->tail.x, snake->tail.y, 0); snake->tail.x = tail.x; snake->tail.y = tail.y; } } void snake_init(grid * grid, snake * snake, int x, int y) { snake->head = {x - 1, y}; snake->tail = {x - 1, y}; snake->direction = RIGHT; snake_move(grid, snake, true); } static ft0::data_transfer::data_format data[4]; uint8_t send_buf[1024] __attribute__((aligned(32))); uint8_t recv_buf[1024] __attribute__((aligned(32))); void do_get_condition() { auto writer = maple::host_command_writer(send_buf, recv_buf); using command_type = maple::get_condition; using response_type = maple::data_transfer; auto [host_command, host_response] = writer.append_command_all_ports(); for (int port = 0; port < 4; port++) { auto& data_fields = host_command[port].bus_data.data_fields; data_fields.function_type = std::byteswap(function_type::controller); } maple::dma_start(send_buf, writer.send_offset, recv_buf, writer.recv_offset); for (uint8_t port = 0; port < 4; port++) { auto& bus_data = host_response[port].bus_data; if (bus_data.command_code != response_type::command_code) { return; } auto& data_fields = bus_data.data_fields; if ((std::byteswap(data_fields.function_type) & function_type::controller) == 0) { return; } data[port].digital_button = data_fields.data.digital_button; for (int i = 0; i < 6; i++) { data[port].analog_coordinate_axis[i] = data_fields.data.analog_coordinate_axis[i]; } } } void vbr100() { serial::string("vbr100\n"); interrupt_exception(); } void vbr400() { serial::string("vbr400\n"); interrupt_exception(); } const int framebuffer_width = 640; const int framebuffer_height = 480; const int tile_width = framebuffer_width / 32; const int tile_height = framebuffer_height / 32; constexpr uint32_t ta_alloc = 0 | ta_alloc_ctrl::pt_opb::no_list | ta_alloc_ctrl::tm_opb::no_list | ta_alloc_ctrl::t_opb::_32x4byte | ta_alloc_ctrl::om_opb::no_list | ta_alloc_ctrl::o_opb::no_list ; constexpr int ta_cont_count = 1; constexpr struct opb_size opb_size[ta_cont_count] = { { .opaque = 0, .opaque_modifier = 0, .translucent = 32 * 4, .translucent_modifier = 0, .punch_through = 0 } }; static volatile int ta_in_use = 0; static volatile int core_in_use = 0; static volatile int next_frame = 0; static volatile int framebuffer_ix = 0; static volatile int next_frame_ix = 0; static inline void pump_events(uint32_t istnrm) { if (istnrm & istnrm::v_blank_in) { system.ISTNRM = istnrm::v_blank_in; next_frame = 1; holly.FB_R_SOF1 = texture_memory_alloc.framebuffer[next_frame_ix].start; } if (istnrm & istnrm::end_of_render_tsp) { system.ISTNRM = istnrm::end_of_render_tsp | istnrm::end_of_render_isp | istnrm::end_of_render_video; next_frame_ix = framebuffer_ix; framebuffer_ix += 1; if (framebuffer_ix >= 3) framebuffer_ix = 0; core_in_use = 0; } if (istnrm & istnrm::end_of_transferring_translucent_list) { system.ISTNRM = istnrm::end_of_transferring_translucent_list; core_in_use = 1; holly.FB_W_SOF1 = texture_memory_alloc.framebuffer[framebuffer_ix].start; holly.STARTRENDER = 1; ta_in_use = 0; } } void vbr600() { uint32_t sr; asm volatile ("stc sr,%0" : "=r" (sr)); sr |= sh::sr::imask(15); asm volatile ("ldc %0,sr" : : "r" (sr)); if (sh7091.CCN.EXPEVT == 0 && sh7091.CCN.INTEVT == 0x320) { uint32_t istnrm = system.ISTNRM; uint32_t isterr = system.ISTERR; if (isterr) { serial::string("isterr: "); serial::integer(isterr); if (isterr & 1) { system.ISTERR = 1; } } pump_events(istnrm); sr &= ~sh::sr::imask(15); asm volatile ("ldc %0,sr" : : "r" (sr)); return; } serial::string("vbr600\n"); interrupt_exception(); } void global_polygon_type_0(ta_parameter_writer& writer, uint32_t para_control_obj_control ) { const uint32_t parameter_control_word = para_control::para_type::polygon_or_modifier_volume | obj_control::col_type::floating_color | obj_control::gouraud | para_control_obj_control ; const uint32_t isp_tsp_instruction_word = isp_tsp_instruction_word::depth_compare_mode::greater_or_equal | isp_tsp_instruction_word::culling_mode::no_culling ; uint32_t tsp_instruction_word = tsp_instruction_word::fog_control::no_fog | tsp_instruction_word::src_alpha_instr::one | tsp_instruction_word::dst_alpha_instr::zero | tsp_instruction_word::texture_shading_instruction::decal ; uint32_t texture_control_word = 0; writer.append() = ta_global_parameter::polygon_type_0(parameter_control_word, isp_tsp_instruction_word, tsp_instruction_word, texture_control_word, 0, 0); } void global_polygon_type_0_packed(ta_parameter_writer& writer, uint32_t para_control_obj_control, int ix ) { const uint32_t parameter_control_word = para_control::para_type::polygon_or_modifier_volume | obj_control::col_type::packed_color | obj_control::texture | para_control_obj_control ; const uint32_t isp_tsp_instruction_word = isp_tsp_instruction_word::depth_compare_mode::greater_or_equal | isp_tsp_instruction_word::culling_mode::no_culling ; uint32_t tsp_instruction_word = tsp_instruction_word::fog_control::no_fog | tsp_instruction_word::src_alpha_instr::src_alpha | tsp_instruction_word::dst_alpha_instr::inverse_src_alpha | tsp_instruction_word::texture_shading_instruction::decal | tsp_instruction_word::texture_u_size::from_int(32) | tsp_instruction_word::texture_v_size::from_int(32) | tsp_instruction_word::filter_mode::bilinear_filter ; uint32_t texture_address = texture_memory_alloc.texture.start + (32 * 32 * 2) * ix; uint32_t texture_control_word = texture_control_word::pixel_format::_1555 | texture_control_word::scan_order::twiddled | texture_control_word::texture_address(texture_address / 8) ; writer.append() = ta_global_parameter::polygon_type_0(parameter_control_word, isp_tsp_instruction_word, tsp_instruction_word, texture_control_word, 0, 0); } static inline void render_quad(ta_parameter_writer& writer, vec3 ap, vec3 bp, vec3 cp, vec3 dp, vec3 ac, vec3 bc, vec3 cc, vec3 dc) { if (ap.z < 0 || bp.z < 0 || cp.z < 0 || dp.z < 0) return; writer.append() = ta_vertex_parameter::polygon_type_1(polygon_vertex_parameter_control_word(false), ap.x, ap.y, ap.z, 1, ac.r, ac.g, ac.b); writer.append() = ta_vertex_parameter::polygon_type_1(polygon_vertex_parameter_control_word(false), bp.x, bp.y, bp.z, 1, bc.r, bc.g, bc.b); writer.append() = ta_vertex_parameter::polygon_type_1(polygon_vertex_parameter_control_word(false), dp.x, dp.y, dp.z, 1, dc.r, dc.g, dc.b); writer.append() = ta_vertex_parameter::polygon_type_1(polygon_vertex_parameter_control_word(true), cp.x, cp.y, cp.z, 1, cc.r, cc.g, cc.b); } static inline void render_quad2(ta_parameter_writer& writer, vec3 ap, vec3 bp, vec3 cp, vec3 dp) { if (ap.z < 0 || bp.z < 0 || cp.z < 0 || dp.z < 0) return; writer.append() = ta_vertex_parameter::polygon_type_3(polygon_vertex_parameter_control_word(false), ap.x, ap.y, ap.z, 0, 0, 0, 0); writer.append() = ta_vertex_parameter::polygon_type_3(polygon_vertex_parameter_control_word(false), bp.x, bp.y, bp.z, 0, 1, 0, 0); writer.append() = ta_vertex_parameter::polygon_type_3(polygon_vertex_parameter_control_word(false), dp.x, dp.y, dp.z, 1, 0, 0, 0); writer.append() = ta_vertex_parameter::polygon_type_3(polygon_vertex_parameter_control_word(true), cp.x, cp.y, cp.z, 1, 1, 0, 0); } static inline vec3 screen_transform(vec3 v) { float dim = 480 / 2.0; return { v.x / (1.f * v.z) * dim + 640 / 2.0f, v.y / (1.f * v.z) * dim + 480 / 2.0f, 1 / v.z, }; } static int last_value = -1; static inline void transfer_knot_face(ta_parameter_writer& writer, const grid * grid, int r0, int r1, int s0, int s1) { // x, y int value = grid_get(grid, r0, s0); if (value > 0) value = 0; if (value < 0) value = 1; if (last_value != value) { global_polygon_type_0_packed(writer, para_control::list_type::translucent, value); last_value = value; } render_quad2(writer, t_knot_ring[r0][s0], t_knot_ring[r0][s1], t_knot_ring[r1][s1], t_knot_ring[r1][s0]); } static inline void transfer_knot_inner(ta_parameter_writer& writer, const grid * grid, int r0, int r1) { for (int s0 = 0; s0 < knot_segments - 1; s0++) { int s1 = s0 + 1; transfer_knot_face(writer, grid, r0, r1, s0, s1); } transfer_knot_face(writer, grid, r0, r1, knot_segments - 1, 0); } void transfer_knot(ta_parameter_writer& writer, mat4x4& trans, const grid * grid) { for (int i = 0; i < knot_rings; i++) { //t_knot_center[i] = screen_transform(trans * _knot_center[i]); for (int j = 0; j < knot_segments; j++) { t_knot_ring[i][j] = screen_transform(trans * _knot_ring[i][j]); } } for (int r0 = 0; r0 < knot_rings - 1; r0++) { int r1 = r0 + 1; transfer_knot_inner(writer, grid, r0, r1); } transfer_knot_inner(writer, grid, knot_rings - 1, 0); } void transfer_grid(ta_parameter_writer& writer, const grid * grid) { float dim = 10; for (int y = 0; y < grid->height; y++) { for (int x = 0; x < grid->width; x++) { int value = grid_get(grid, x, y); if (value == 0) continue; float fx = x; float fx1 = x + 1; float fy = y; float fy1 = y + 1; vec3 a = {dim * fx , dim * fy , 0.001f}; vec3 b = {dim * fx1, dim * fy , 0.001f}; vec3 c = {dim * fx1, dim * fy1, 0.001f}; vec3 d = {dim * fx , dim * fy1, 0.001f}; mat4x4 r = translate((vec3){20, 20, 0}); vec3 color; if (value > 0) color = {1, 1, 1}; else { color = {0, 0, 1}; } render_quad(writer, r * a, r * b, r * c, r * d, color, color, color, color); } } } void transfer_scene(ta_parameter_writer& writer, grid * grid, mat4x4& trans) { global_polygon_type_0(writer, para_control::list_type::translucent); transfer_grid(writer, grid); last_value = -1; transfer_knot(writer, trans, grid); writer.append() = ta_global_parameter::end_of_list(para_control::para_type::end_of_list); } void transfer_ta_fifo_texture_memory_32byte(void * dst, const void * src, int length) { assert((((int)dst) & 31) == 0); assert((((int)length) & 31) == 0); uint32_t out_addr = (uint32_t)dst; sh7091.CCN.QACR0 = ((reinterpret_cast(out_addr) >> 24) & 0b11100); sh7091.CCN.QACR1 = ((reinterpret_cast(out_addr) >> 24) & 0b11100); volatile uint32_t * base = &store_queue[(out_addr & 0x03ffffe0) / 4]; const uint32_t * src32 = reinterpret_cast(src); length = (length + 31) & ~31; // round up to nearest multiple of 32 while (length > 0) { base[0] = src32[0]; base[1] = src32[1]; base[2] = src32[2]; base[3] = src32[3]; base[4] = src32[4]; base[5] = src32[5]; base[6] = src32[6]; base[7] = src32[7]; asm volatile ("pref @%0" : // output : "r" (&base[0]) // input : "memory"); length -= 32; base += 8; src32 += 8; } } void transfer_texture() { const void * start[5] = { (void *)&_binary_texture_game_of_life_dead_data_start, (void *)&_binary_texture_game_of_life_live1_data_start, (void *)&_binary_texture_game_of_life_live2_data_start, (void *)&_binary_texture_game_of_life_live3_data_start, (void *)&_binary_texture_game_of_life_live4_data_start, }; for (uint32_t i = 0; i < (sizeof (start)) / (sizeof (start[0])); i++) { uint32_t offset = texture_memory_alloc.texture.start + (32 * 32 * 2) * i; void * dst = reinterpret_cast(&ta_fifo_texture_memory[offset / 4]); const void * src = start[i]; uint32_t size = 32 * 32 * 2; transfer_ta_fifo_texture_memory_32byte(dst, src, size); } } void transfer_textures() { system.LMMODE0 = 0; // 64-bit address space system.LMMODE1 = 0; // 64-bit address space transfer_texture(); } static inline mat4x4 update_analog(const mat4x4& screen_trans) { const float l_ = static_cast(data[0].analog_coordinate_axis[0]) * (1.f / 255.f); const float r_ = static_cast(data[0].analog_coordinate_axis[1]) * (1.f / 255.f); const float x_ = static_cast(data[0].analog_coordinate_axis[2] - 0x80) / 127.f; const float y_ = static_cast(data[0].analog_coordinate_axis[3] - 0x80) / 127.f; float x = 0.05f * -x_; float y = 0.05f * y_; float z = 1.0 + (-0.01f * r_ + 0.01f * l_); mat4x4 s = scale((vec3){z, z, z}); mat4x4 ry = rotate_x(x); mat4x4 rz = rotate_z(y); return screen_trans * s * ry * rz; } static inline void update_digital(snake * snake) { int ra = ft0::data_transfer::digital_button::ra(data[0].digital_button) == 0; int la = ft0::data_transfer::digital_button::la(data[0].digital_button) == 0; int da = ft0::data_transfer::digital_button::da(data[0].digital_button) == 0; int ua = ft0::data_transfer::digital_button::ua(data[0].digital_button) == 0; if (ra) { snake->direction = RIGHT; } if (la) { snake->direction = LEFT; } if (ua) { snake->direction = UP; } if (da) { snake->direction = DOWN; } } static inline vec3 lerp(vec3 a, vec3 b, float t) { return a + (b - a) * t; } uint8_t __attribute__((aligned(32))) ta_parameter_buf[1024 * 1024 * 2]; int main() { sh7091.TMU.TSTR = 0; // stop all timers sh7091.TMU.TOCR = tmu::tocr::tcoe::tclk_is_external_clock_or_input_capture; sh7091.TMU.TCR0 = tmu::tcr0::tpsc::p_phi_256; // 256 / 50MHz = 5.12 μs ; underflows in ~1 hour sh7091.TMU.TCOR0 = 0xffff'ffff; sh7091.TMU.TCNT0 = 0xffff'ffff; sh7091.TMU.TSTR = tmu::tstr::str0::counter_start; serial::init(0); interrupt_init(); holly.SOFTRESET = softreset::pipeline_soft_reset | softreset::ta_soft_reset; holly.SOFTRESET = 0; core_init(); transfer_textures(); holly.FPU_SHAD_SCALE = fpu_shad_scale::simple_shadow_enable::parameter_selection_volume_mode; system.IML6NRM = istnrm::end_of_render_tsp | istnrm::v_blank_in | istnrm::end_of_transferring_translucent_list; region_array_multipass(tile_width, tile_height, opb_size, ta_cont_count, texture_memory_alloc.region_array.start, texture_memory_alloc.object_list.start); background_parameter2(texture_memory_alloc.background[0].start, 0xff000000); video_output::set_mode_vga(); ta_parameter_writer writer = ta_parameter_writer(ta_parameter_buf, (sizeof (ta_parameter_buf))); { uint32_t region_array_start = texture_memory_alloc.region_array.start; uint32_t isp_tsp_parameters_start = texture_memory_alloc.isp_tsp_parameters.start; uint32_t background_start = texture_memory_alloc.background[0].start; holly.REGION_BASE = region_array_start; holly.PARAM_BASE = isp_tsp_parameters_start; uint32_t background_offset = background_start - isp_tsp_parameters_start; holly.ISP_BACKGND_T = isp_backgnd_t::tag_address(background_offset / 4) | isp_backgnd_t::tag_offset(0) | isp_backgnd_t::skip(1); holly.ISP_BACKGND_D = _i(1.f/100000.f); holly.FB_W_CTRL = fb_w_ctrl::fb_dither | fb_w_ctrl::fb_packmode::_565_rgb_16bit; uint32_t bytes_per_pixel = 2; holly.FB_W_LINESTRIDE = (framebuffer_width * bytes_per_pixel) / 8; } const int max_width = max_knot_rings; const int max_height = max_knot_segments; static int grid_a[max_width * max_height] = {}; static int grid_b[max_width * max_height] = {}; grid grid = { .width = knot_rings, .height = knot_segments, .generation = 1, .data = {grid_a, grid_b}, }; for (int i = 0; i < 8; i++) { seed_grid(&grid, 32 * i, 0); } snake snake; grid.generation = 0; snake_init(&grid, &snake, 5, 5); int tick = 0; mat4x4 screen_trans = { 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 1, }; knot_edges(knot_rings, knot_segments); do_get_condition(); while (1) { maple::dma_wait_complete(); do_get_condition(); //screen_trans = update_analog(screen_trans); update_digital(&snake); constexpr int ticks_per_animation_frame = 16; if ((tick & (ticks_per_animation_frame - 1)) == 0) { grid_generation(&grid); snake_move(&grid, &snake, false); } /* constexpr float tick_div = 1.0f / (float)ticks_per_animation_frame; int anim_tick = -tick; int anim_frame = anim_tick / ticks_per_animation_frame; float t = (anim_tick - (anim_frame * ticks_per_animation_frame)) * tick_div; int eye0 = (anim_frame + 0) & (knot_rings - 1); int eye1 = (anim_frame + 1) & (knot_rings - 1); int center0 = (anim_frame + 1) & (knot_rings - 1); int center1 = (anim_frame + 2) & (knot_rings - 1); vec3 eye = lerp(_knot_center[eye0], _knot_center[eye1], t); vec3 center = lerp(_knot_center[center0], _knot_center[center1], t); vec3 up = lerp(_knot_ring[eye0][0], _knot_ring[eye1][0], t); */ int ex = (snake.head.x - 10) & (grid.width - 1); int cx = (snake.head.x + 0) & (grid.width - 1); int y = (snake.head.y) & (grid.height - 1); vec3 up = -_knot_ring[cx][snake.head.y]; vec3 eye = _knot_center[ex]; vec3 center = -_knot_center[cx]; screen_trans = look_at(eye, center, up); writer.offset = 0; transfer_scene(writer, &grid, screen_trans); tick += 1; if ((tick & 3) == 0) { //grid_generation(&grid); } while (ta_in_use); while (core_in_use); ta_in_use = 1; ta_polygon_converter_init2(texture_memory_alloc.isp_tsp_parameters.start, texture_memory_alloc.isp_tsp_parameters.end, texture_memory_alloc.object_list.start, texture_memory_alloc.object_list.end, opb_size[0].total(), ta_alloc, tile_width, tile_height); ta_polygon_converter_writeback(writer.buf, writer.offset); ta_polygon_converter_transfer(writer.buf, writer.offset); while (next_frame == 0); next_frame = 0; } }