#include #include #include "align.hpp" #include "sh7091.hpp" #include "sh7091_bits.hpp" #include "systembus.hpp" #include "systembus_bits.hpp" #include "maple_bits.hpp" #include "maple_bus_bits.hpp" #include "maple_bus_commands.hpp" #include "maple.hpp" namespace maple { void init_host_command(uint32_t * command_buf, uint32_t * receive_buf, uint32_t destination_port, uint8_t destination_ap, uint8_t command_code, uint8_t data_size, bool end_flag) { // this function does not care about the template instantiation of // host_command--data_fields is not manipulated here. auto host_command = reinterpret_cast *>(command_buf); host_command->host_instruction = (end_flag ? host_instruction::end_flag : 0) | (destination_port & host_instruction::port_select::bit_mask) // host_instruction::port_select::a | host_instruction::transfer_length((data_size / 4)); host_command->receive_data_storage_address = receive_data_storage_address::address(reinterpret_cast(receive_buf)); host_command->bus_data.command_code = command_code; host_command->bus_data.destination_ap = destination_ap; //ap::de::expansion_device | ap::port_select::a | ap::lm_bus::_0 host_command->bus_data.source_ap = destination_ap & ap::port_select::bit_mask; host_command->bus_data.data_size = data_size / 4; } void init_host_command_all_ports(uint32_t * buf, uint32_t * receive_buf, uint8_t command_code, uint32_t command_data_size, uint32_t response_data_size) { const uint32_t command_size = ((sizeof (struct host_command)) + command_data_size); const uint32_t response_size = align_32byte(((sizeof (struct command_response)) + response_data_size)); init_host_command(&buf[(command_size / 4) * 0], &receive_buf[(response_size / 4) * 0], host_instruction::port_select::a, // destination_port ap::de::device | ap::port_select::a, command_code, command_data_size, false); // end_flag init_host_command(&buf[(command_size / 4) * 1], &receive_buf[(response_size / 4) * 1], host_instruction::port_select::b, // destination_port ap::de::device | ap::port_select::b, command_code, command_data_size, false); // end_flag init_host_command(&buf[(command_size / 4) * 2], &receive_buf[(response_size / 4) * 2], host_instruction::port_select::c, // destination_port ap::de::device | ap::port_select::c, command_code, command_data_size, false); // end_flag init_host_command(&buf[(command_size / 4) * 3], &receive_buf[(response_size / 4) * 3], host_instruction::port_select::d, // destination_port ap::de::device | ap::port_select::d, command_code, command_data_size, true); // end_flag } void init_device_request(uint32_t * buf, uint32_t * receive_buf, uint32_t destination_port, uint8_t destination_ap) { init_host_command(buf, receive_buf, destination_port, destination_ap, device_request::command_code, (sizeof (struct device_request::data_fields)), true); } void init_get_condition(uint32_t * buf, uint32_t * receive_buf, uint32_t destination_port, uint8_t destination_ap) { init_host_command(buf, receive_buf, destination_port, destination_ap, get_condition::command_code, (sizeof (struct get_condition::data_fields)), true); auto host_command = reinterpret_cast *>(buf); auto& fields = host_command->bus_data.data_fields; // controller function type fields.function_type = std::byteswap(function_type::controller); } void init_block_write(uint32_t * command_buf, uint32_t * receive_buf, uint32_t destination_port, uint8_t destination_ap, uint32_t * data, uint32_t data_size) { init_host_command(command_buf, receive_buf, destination_port, destination_ap, block_write::command_code, (sizeof (struct block_write::data_fields)) + data_size, true); auto host_command = reinterpret_cast> *>(command_buf); auto& fields = host_command->bus_data.data_fields; // BW LCD function type fields.function_type = std::byteswap(function_type::bw_lcd); // lcd number 0 (1 total lcd) fields.pt = 0; // phase 0 (from 0 to 3) fields.phase = 0; // plane 0 (2 total levels of gradation) fields.block_no = std::byteswap(0x0000); for (uint32_t i = 0; i < (data_size / 4); i++) { fields.written_data[i] = data[i]; } } void dma_start(uint32_t * command_buf) { sh7091.DMAC.DMAOR = DMAOR__DDT // on-demand data transfer mode | DMAOR__PR__CH2_CH0_CH1_CH3 // priority mode; CH2 > CH0 > CH1 > CH3 | DMAOR__DME; // DMAC master enable // clear maple-DMA end status system.ISTNRM = ISTNRM__END_OF_DMA_MAPLE_DMA; // disable maple-DMA maple_if.MDEN = mden::dma_enable::abort; while (mdst::start_status::status(maple_if.MDST) != 0); // 20nsec * 0xc350 = 1ms constexpr uint32_t one_msec = 0xc350; maple_if.MSYS = msys::time_out_counter(one_msec) | msys::sending_rate::_2M; // top address: the first/lowest address // bottom address: the last/highest address maple_if.MDAPRO = mdapro::security_code | mdapro::top_address(0x00) | mdapro::bottom_address(0x7f); maple_if.MDTSEL = mdtsel::trigger_select::software_initiation; maple_if.MDSTAR = mdstar::table_address(reinterpret_cast(command_buf)); maple_if.MDEN = mden::dma_enable::enable; maple_if.MDST = mdst::start_status::start; // wait for completion //while (mdst::start_status::status(maple_if.MDST) != 0); while ((system.ISTNRM & ISTNRM__END_OF_DMA_MAPLE_DMA) == 0); system.ISTNRM = ISTNRM__END_OF_DMA_MAPLE_DMA; } }