#include #include namespace twiddle { /* This reproduces the twiddle index table shown in "3.6.2.1 Twiddled Format". x → 000 001 010 011 -------------------------------- | xyxyxy xyxyxy xyxyxy xyxyxy |=============================== y 000 | 000000 000010 001000 001010 ↓ 001 | 000001 000011 001001 001011 010 | 000100 000110 001100 001110 011 | 000101 000111 001101 001111 alternately, in verilog syntax: input [2:0] x; // x coordinate input [2:0] y; // y coordinate output [5:0] t; // twiddled index assign t = {x[2], y[2], x[1], y[1], x[0], y[0]}; */ constexpr inline uint32_t from_xy(uint32_t x, uint32_t y) { // maximum texture size : 1024x1024 // maximum 1-dimensional index: 0xfffff // bits : 19-0 uint32_t twiddle_ix = 0; for (int i = 0; i <= (19 / 2); i++) { twiddle_ix |= ((y >> i) & 1) << (i * 2 + 0); twiddle_ix |= ((x >> i) & 1) << (i * 2 + 1); } return twiddle_ix; } static_assert(from_xy(0b000, 0b000) == 0); static_assert(from_xy(0b001, 0b000) == 2); static_assert(from_xy(0b010, 0b000) == 8); static_assert(from_xy(0b011, 0b000) == 10); static_assert(from_xy(0b100, 0b000) == 32); static_assert(from_xy(0b101, 0b000) == 34); static_assert(from_xy(0b110, 0b000) == 40); static_assert(from_xy(0b111, 0b000) == 42); static_assert(from_xy(0b000, 0b001) == 1); static_assert(from_xy(0b000, 0b010) == 4); static_assert(from_xy(0b000, 0b011) == 5); static_assert(from_xy(0b000, 0b100) == 16); static_assert(from_xy(0b000, 0b101) == 17); static_assert(from_xy(0b000, 0b110) == 20); static_assert(from_xy(0b000, 0b111) == 21); constexpr inline std::array from_ix(uint32_t curve_ix) { std::array x_y = {0, 0}; uint32_t curve_bit = 0; while (curve_ix != 0) { x_y[(curve_bit + 1) % 2] |= (curve_ix & 1) << (curve_bit / 2); curve_ix >>= 1; curve_bit += 1; } return x_y; } static_assert(from_ix(0) == std::array{{0b000, 0b000}}); static_assert(from_ix(2) == std::array{{0b001, 0b000}}); static_assert(from_ix(8) == std::array{{0b010, 0b000}}); static_assert(from_ix(10) == std::array{{0b011, 0b000}}); static_assert(from_ix(32) == std::array{{0b100, 0b000}}); static_assert(from_ix(34) == std::array{{0b101, 0b000}}); static_assert(from_ix(40) == std::array{{0b110, 0b000}}); static_assert(from_ix(42) == std::array{{0b111, 0b000}}); static_assert(from_ix(1) == std::array{{0b000, 0b001}}); static_assert(from_ix(4) == std::array{{0b000, 0b010}}); static_assert(from_ix(5) == std::array{{0b000, 0b011}}); static_assert(from_ix(16) == std::array{{0b000, 0b100}}); static_assert(from_ix(17) == std::array{{0b000, 0b101}}); static_assert(from_ix(20) == std::array{{0b000, 0b110}}); static_assert(from_ix(21) == std::array{{0b000, 0b111}}); template void texture(volatile T * dst, const T * src, const uint32_t width, const uint32_t height) { for (uint32_t y = 0; y < height; y++) { for (uint32_t x = 0; x < width; x++) { uint32_t twiddle_ix = from_xy(x, y); T value = src[y * width + x]; dst[twiddle_ix] = value; } } } template void texture_4bpp(volatile T * dst, const T * src, const uint32_t width, const uint32_t height) { for (uint32_t y = 0; y < height; y++) { for (uint32_t x = 0; x < width; x++) { uint32_t twiddle_ix = from_xy(x, y); T value = src[y * width + x]; uint32_t shift = (4 * (twiddle_ix & 1)); dst[twiddle_ix / 2] &= ~(0b1111 << shift); dst[twiddle_ix / 2] |= value << shift; } } } }