#include #include #include "align.hpp" #include "vga.hpp" #include "holly/texture_memory_alloc.hpp" #include "holly/holly.hpp" #include "holly/core.hpp" #include "holly/core_bits.hpp" #include "holly/ta_fifo_polygon_converter.hpp" #include "holly/ta_parameter.hpp" #include "holly/ta_global_parameter.hpp" #include "holly/ta_vertex_parameter.hpp" #include "holly/ta_bits.hpp" #include "holly/region_array.hpp" #include "holly/background.hpp" #include "holly/isp_tsp.hpp" #include "memorymap.hpp" #include "geometry/plane.hpp" #include "geometry/cube.hpp" #include "math/vec3.hpp" #include "math/vec4.hpp" #include "maple/maple.hpp" #include "maple/maple_impl.hpp" #include "maple/maple_bus_bits.hpp" #include "maple/maple_bus_commands.hpp" #include "maple/maple_bus_ft0.hpp" #include "macaw.hpp" #include "wolf.hpp" #include "twiddle.hpp" static ft0::data_transfer::data_format data[4]; void do_get_condition(uint32_t * command_buf, uint32_t * receive_buf) { using command_type = get_condition; using response_type = data_transfer; get_condition::data_fields data_fields = { .function_type = std::byteswap(function_type::controller) }; const uint32_t size = maple::init_host_command_all_ports(command_buf, receive_buf, data_fields); maple::dma_start(command_buf, size); using command_response_type = struct maple::command_response; for (uint8_t port = 0; port < 4; port++) { auto response = reinterpret_cast(receive_buf); auto& bus_data = response[port].bus_data; if (bus_data.command_code != response_type::command_code) { return; } auto& data_fields = bus_data.data_fields; if ((data_fields.function_type & std::byteswap(function_type::controller)) == 0) { return; } data[port].analog_axis_1 = data_fields.data.analog_axis_1; data[port].analog_axis_2 = data_fields.data.analog_axis_2; data[port].analog_axis_3 = data_fields.data.analog_axis_3; data[port].analog_axis_4 = data_fields.data.analog_axis_4; } } struct rot_pos { float theta; float x; float y; }; vec3 _transform(const vec3& point, const uint32_t scale) { float x = point.x; float y = point.y; float z = point.z; x *= scale; y *= scale; z *= scale; // world transform y += 2.0f; x *= 0.8; y *= 0.8; z *= 0.8; // camera transform z += 4; // perspective x = x / z; y = y / z; // screen space transform x *= 240.f; y *= 240.f; x += 320.f; y += 240.f; z = 1 / z; return {x, y, z}; } vec3 _transform(const vec3& point, const uint32_t scale, const struct rot_pos& rot_pos) { float x = point.x; float y = point.y; float z = point.z; float t; // object transform t = z * cos(rot_pos.theta) - x * sin(rot_pos.theta); x = z * sin(rot_pos.theta) + x * cos(rot_pos.theta); z = t; x += rot_pos.x; z += rot_pos.y; x *= scale; y *= scale; z *= scale; // world transform y += 2.0f; x *= 0.8; y *= 0.8; z *= 0.8; // camera transform z += 4; // perspective x = x / z; y = y / z; // screen space transform x *= 240.f; y *= 240.f; x += 320.f; y += 240.f; z = 1 / z; return {x, y, z}; } uint32_t argb8888(const vec4& color) { return ((static_cast(255.f * color.a) & 0xff) << 24) | ((static_cast(255.f * color.r) & 0xff) << 16) | ((static_cast(255.f * color.g) & 0xff) << 8) | ((static_cast(255.f * color.b) & 0xff) << 0) ; } void transform_polygon(ta_parameter_writer& parameter, const vec3 * vertices, const vec2 * texture, const face_vtn& face, const float scale, const vec4& color0, const vec4& color1, const struct rot_pos& rot_pos) { const uint32_t parameter_control_word = para_control::para_type::polygon_or_modifier_volume | para_control::list_type::opaque | obj_control::col_type::packed_color | obj_control::shadow | obj_control::volume::polygon::with_two_volumes | obj_control::texture; const uint32_t isp_tsp_instruction_word = isp_tsp_instruction_word::depth_compare_mode::greater | isp_tsp_instruction_word::culling_mode::no_culling; const uint32_t tsp_instruction_word = tsp_instruction_word::src_alpha_instr::one | tsp_instruction_word::dst_alpha_instr::zero | tsp_instruction_word::fog_control::no_fog | tsp_instruction_word::texture_u_size::from_int(128) | tsp_instruction_word::texture_v_size::from_int(128); uint32_t texture_address0 = (offsetof (struct texture_memory_alloc, texture)) + 128 * 128 * 2 * 0; uint32_t texture_address1 = (offsetof (struct texture_memory_alloc, texture)) + 128 * 128 * 2 * 1; const uint32_t texture_control_word_0 = texture_control_word::pixel_format::_565 | texture_control_word::scan_order::twiddled | texture_control_word::texture_address(texture_address0 / 8); const uint32_t texture_control_word_1 = texture_control_word::pixel_format::_565 | texture_control_word::scan_order::twiddled | texture_control_word::texture_address(texture_address1 / 8); parameter.append() = ta_global_parameter::polygon_type_3(parameter_control_word, isp_tsp_instruction_word, tsp_instruction_word, // tsp_instruction_word_0 texture_control_word_0, // texture_control_word_0 tsp_instruction_word, // tsp_instruction_word_1 texture_control_word_1, // texture_control_word_1 0, // data_size_for_sort_dma 0 // next_address_for_sort_dma ); constexpr uint32_t strip_length = 3; for (uint32_t i = 0; i < strip_length; i++) { // world transform uint32_t vertex_ix = face[i].vertex; auto& vertex = vertices[vertex_ix]; auto point = _transform(vertex, scale, rot_pos); uint32_t texture_ix = face[i].texture; auto& uv = texture[texture_ix]; bool end_of_strip = i == strip_length - 1; parameter.append() = ta_vertex_parameter::polygon_type_11(polygon_vertex_parameter_control_word(end_of_strip), point.x, point.y, point.z, uv.u, uv.v, argb8888(color0), // base_color_0 0, // offset_color_0 uv.u, uv.v, argb8888(color1), // base_color_1 0 // offset_color_1 ); } } void transform_modifier_volume(ta_parameter_writer& parameter, const vec3 * vertices, const face_vtn * faces, const uint32_t num_faces, const float scale) { const uint32_t parameter_control_word = para_control::para_type::polygon_or_modifier_volume | para_control::list_type::opaque_modifier_volume // | group_control::group_en // | group_control::user_clip::inside_enable ; const uint32_t isp_tsp_instruction_word = isp_tsp_instruction_word::volume_instruction::normal_polygon | isp_tsp_instruction_word::culling_mode::no_culling; parameter.append() = ta_global_parameter::modifier_volume(parameter_control_word, isp_tsp_instruction_word ); for (uint32_t i = 0; i < num_faces; i++) { // world transform uint32_t ix_a = faces[i][0].vertex; uint32_t ix_b = faces[i][1].vertex; uint32_t ix_c = faces[i][2].vertex; auto& _a = vertices[ix_a]; auto& _b = vertices[ix_b]; auto& _c = vertices[ix_c]; auto a = _transform(_a, scale); auto b = _transform(_b, scale); auto c = _transform(_c, scale); if (i == (num_faces - 1)) { const uint32_t last_parameter_control_word = para_control::para_type::polygon_or_modifier_volume | para_control::list_type::opaque_modifier_volume | obj_control::volume::modifier_volume::last_in_volume; const uint32_t last_isp_tsp_instruction_word = isp_tsp_instruction_word::volume_instruction::inside_last_polygon | isp_tsp_instruction_word::culling_mode::no_culling; parameter.append() = ta_global_parameter::modifier_volume(last_parameter_control_word, last_isp_tsp_instruction_word); } parameter.append() = ta_vertex_parameter::modifier_volume(modifier_volume_vertex_parameter_control_word(), a.x, a.y, a.z, b.x, b.y, b.z, c.x, c.y, c.z); } } void init_texture_memory(const struct opb_size& opb_size) { auto mem = reinterpret_cast(texture_memory32); background_parameter(mem->background, 0xff220000); region_array2(mem->region_array, (offsetof (struct texture_memory_alloc, object_list)), 640 / 32, // width 480 / 32, // height opb_size ); } void load_texture(const uint8_t * src, const uint32_t size, const uint32_t ix) { auto mem = reinterpret_cast(texture_memory64); uint16_t temp[size / 3]; for (uint32_t px = 0; px < size / 3; px++) { uint8_t r = src[px * 3 + 0]; uint8_t g = src[px * 3 + 1]; uint8_t b = src[px * 3 + 2]; uint16_t rgb565 = ((r / 8) << 11) | ((g / 4) << 5) | ((b / 8) << 0); temp[px] = rgb565; } twiddle::texture(&mem->texture[(128 * 128 * 2 * ix) / 2], temp, 128, 128); } void update_rot_pos(struct rot_pos& rot_pos) { const float l_pos = static_cast(data[0].analog_axis_1) * (1.f / 255.f); const float r_pos = static_cast(data[0].analog_axis_2) * (1.f / 255.f); const float x_pos = static_cast(data[0].analog_axis_3 - 0x80) * (0.5f / 127.f); const float y_pos = static_cast(data[0].analog_axis_4 - 0x80) * (0.5f / 127.f); const float rotation = (l_pos > r_pos) ? (l_pos) : (-r_pos); constexpr float half_degree = 0.01745329f / 2; rot_pos.x += x_pos / 10.f; rot_pos.y += y_pos / 10.f; rot_pos.theta += rotation * half_degree * 10.f; } uint32_t _ta_parameter_buf[((32 * 8192) + 32) / 4]; uint32_t _command_buf[1024 / 4 + 32]; uint32_t _receive_buf[1024 / 4 + 32]; void main() { vga(); auto src0 = reinterpret_cast(&_binary_macaw_data_start); auto size0 = reinterpret_cast(&_binary_macaw_data_size); auto src1 = reinterpret_cast(&_binary_wolf_data_start); auto size1 = reinterpret_cast(&_binary_wolf_data_size); load_texture(src0, size0, 0); load_texture(src1, size1, 1); // The address of `ta_parameter_buf` must be a multiple of 32 bytes. // This is mandatory for ch2-dma to the ta fifo polygon converter. uint32_t * ta_parameter_buf = align_32byte(_ta_parameter_buf); uint32_t * command_buf = align_32byte(_command_buf); uint32_t * receive_buf = align_32byte(_receive_buf); constexpr uint32_t ta_alloc = ta_alloc_ctrl::pt_opb::no_list | ta_alloc_ctrl::tm_opb::no_list | ta_alloc_ctrl::t_opb::no_list | ta_alloc_ctrl::om_opb::_16x4byte | ta_alloc_ctrl::o_opb::_16x4byte; constexpr struct opb_size opb_size = { .opaque = 16 * 4 , .opaque_modifier = 16 * 4 , .translucent = 0 , .translucent_modifier = 0 , .punch_through = 0 }; holly.SOFTRESET = softreset::pipeline_soft_reset | softreset::ta_soft_reset; holly.SOFTRESET = 0; core_init(); holly.FPU_SHAD_SCALE = fpu_shad_scale::simple_shadow_enable::parameter_selection_volume_mode; init_texture_memory(opb_size); uint32_t frame_ix = 0; constexpr uint32_t num_frames = 1; struct rot_pos rot_pos = { 0.f, 0.f, 0.f }; while (true) { do_get_condition(command_buf, receive_buf); update_rot_pos(rot_pos); ta_polygon_converter_init(opb_size.total(), ta_alloc, 640 / 32, 480 / 32); auto parameter = ta_parameter_writer(ta_parameter_buf); { // plane vec4 color0 = {1.0, 0.9, 0.9, 0.9}; vec4 color1 = {1.0, 0.9, 0.9, 0.9}; float scale = 2.f; for (uint32_t i = 0; i < plane::num_faces; i++) { transform_polygon(parameter, plane::vertices, plane::texture, plane::faces[i], scale, color0, color1, rot_pos); } /* for (uint32_t i = 0; i < cube::num_faces; i++) { transform_polygon(parameter, cube::vertices, cube::faces[i], 1.f, {1.0f, 0.0f, 1.0f, 0.0f}); } */ } // end of opaque list parameter.append() = ta_global_parameter::end_of_list(para_control::para_type::end_of_list); { // cube float scale = 1.f; transform_modifier_volume(parameter, cube::vertices, cube::faces, cube::num_faces, scale); } // end of opaque modifier list parameter.append() = ta_global_parameter::end_of_list(para_control::para_type::end_of_list); ta_polygon_converter_transfer(ta_parameter_buf, parameter.offset); ta_wait_opaque_modifier_volume_list(); core_start_render(frame_ix, num_frames); core_wait_end_of_render_video(); while (!spg_status::vsync(holly.SPG_STATUS)); core_flip(frame_ix, num_frames); while (spg_status::vsync(holly.SPG_STATUS)); frame_ix += 1; } }