#include "memorymap.hpp" #include "systembus.hpp" #include "systembus_bits.hpp" #include "aica/aica.hpp" #include "sh7091/sh7091.hpp" #include "sh7091/sh7091_bits.hpp" #include "sh7091/serial.hpp" #include "printf/printf.h" #include "assert.h" //#include "example/arm/xm.bin.h" #include "xm/xm.h" #include "xm/milkypack01.xm.h" extern void * _binary_start __asm("_binary_example_arm_channel_bin_start"); extern void * _binary_size __asm("_binary_example_arm_channel_bin_size"); constexpr int max_patterns = 64; constexpr int max_instruments = 128; struct xm_state { xm_header_t * header; xm_pattern_header_t * pattern_header[max_patterns]; xm_instrument_header_t * instrument_header[max_instruments]; xm_sample_header_t * sample_header[max_instruments]; // array int sample_data_offset[max_instruments]; }; xm_state xm = {0}; void print_u8(int8_t * chars, int length, const char * end) { for (int i = 0; i < length; i++) { int8_t c = chars[i]; if (c >= 0x20 && c <= 0x7e) { sh7091_character(c); } else { printf("\\x%02x", c); } } if (end != NULL) { while (*end != 0) sh7091_character(*end++); } } int s16(void * buf) { uint8_t * b = (uint8_t *)buf; int16_t v = (b[0] << 0) | (b[1] << 8); return v; } int s32(void * buf) { uint8_t * b = (uint8_t *)buf; int32_t v = (b[0] << 0) | (b[1] << 8) | (b[2] << 16) | (b[3] << 24); return v; } uint8_t __attribute__((aligned(32))) sample_data[512 * 1024]; int sample_data_ix; int unpack_sample(int buf, int offset, xm_sample_header_t * sample_header) { int size = s32(&sample_header->sample_length); if (sample_header->type & (1 << 4)) { // 16-bit samples int num_samples = size / 2; int old = 0; volatile int16_t * out = (volatile int16_t *)(&sample_data[sample_data_ix]); int16_t * in = (int16_t *)(buf + offset); for (int i = 0; i < num_samples; i++) { old += s16(&in[i]); out[i] = old; } } else { // 8-bit int num_samples = size; int old = 0; volatile int8_t * out = (volatile int8_t *)(&sample_data[sample_data_ix]); int8_t * in = (int8_t *)(buf + offset); for (int i = 0; i < num_samples; i++) { old += in[i]; out[i] = old; } } if (size & 1) { size += 1; } return size; } int xm_samples_init(int buf, int offset, int instrument_ix, int number_of_samples) { xm_sample_header_t * sample_header[number_of_samples]; xm.sample_header[instrument_ix] = (xm_sample_header_t *)(buf + offset); for (int i = 0; i < number_of_samples; i++) { sample_header[i] = (xm_sample_header_t *)(buf + offset); offset += (sizeof (xm_sample_header_t)); } for (int i = 0; i < number_of_samples; i++) { int sample_length = s32(&sample_header[i]->sample_length); if (sample_length > 0) { printf("instrument % 2d sample_length % 6d ix %d\n", instrument_ix, sample_length, sample_data_ix); xm.sample_data_offset[instrument_ix] = sample_data_ix; sample_data_ix += unpack_sample(buf, offset, sample_header[i]); assert(sample_data_ix <= (int)(sizeof (sample_data))); } offset += sample_length; } return offset; } void xm_init(int buf) { sample_data_ix = 0; xm.header = (xm_header_t *)(buf); int offset = s32(&xm.header->header_size) + (offsetof (struct xm_header, header_size)); int number_of_patterns = s16(&xm.header->number_of_patterns); printf("number_of_patterns: %d\n", number_of_patterns); for (int i = 0; i < number_of_patterns; i++) { xm_pattern_header_t * pattern_header = (xm_pattern_header_t *)(buf + offset); xm.pattern_header[i] = pattern_header; offset += s32(&pattern_header->pattern_header_length) + s16(&pattern_header->packed_pattern_data_size); } printf("end_of_patterns: %d\n", offset); int number_of_instruments = s16(&xm.header->number_of_instruments); for (int i = 0; i < number_of_instruments; i++) { xm_instrument_header_t * instrument_header = (xm_instrument_header_t *)(buf + offset); xm.instrument_header[i] = instrument_header; offset += s32(&instrument_header->instrument_size); int number_of_samples = s16(&instrument_header->number_of_samples); offset = xm_samples_init(buf, offset, i, number_of_samples); } printf("end_of_instruments: %d\n", offset); } void wait() { uint32_t ffst = system.FFST; while ( ffst::holly_cpu_if_block_internal_write_buffer(ffst) | ffst::holly_g2_if_block_internal_write_buffer(ffst) | ffst::aica_internal_write_buffer(ffst)) { ffst = system.FFST; }; } constexpr uint32_t dma_address_mask = 0x1fffffe0; void g2_aica_dma(uint32_t g2_address, uint32_t system_address, int length) { using namespace dmac; length = (length + 31) & (~31); // is DMAOR needed? sh7091.DMAC.DMAOR = dmaor::ddt::on_demand_data_transfer_mode /* on-demand data transfer mode */ | dmaor::pr::ch2_ch0_ch1_ch3 /* priority mode; CH2 > CH0 > CH1 > CH3 */ | dmaor::dme::operation_enabled_on_all_channels; /* DMAC master enable */ g2_if.G2APRO = 0x4659007f; // disable protection g2_if.ADSTAG = dma_address_mask & g2_address; // G2 address g2_if.ADSTAR = dma_address_mask & system_address; // system memory address g2_if.ADLEN = length; g2_if.ADDIR = 0; // from root bus to G2 device g2_if.ADTSEL = 0; // CPU controlled trigger g2_if.ADEN = 1; // enable G2-DMA g2_if.ADST = 1; // start G2-DMA } void g2_aica_dma_wait_complete() { // wait for maple DMA completion while ((system.ISTNRM & istnrm::end_of_dma_aica_dma) == 0); system.ISTNRM = istnrm::end_of_dma_aica_dma; assert(g2_if.ADST == 0); } uint8_t __attribute__((aligned(32))) zero[0x28c0] = {}; void main() { serial::init(0); int buf = (int)&_binary_xm_milkypack01_xm_start; xm_init(buf); wait(); aica_sound.common.vreg_armrst = aica::vreg_armrst::ARMRST(1); wait(); aica_sound.common.dmea0_mrwinh = aica::dmea0_mrwinh::MRWINH(0b0111); system.ISTNRM = istnrm::end_of_dma_aica_dma; // slot/common: 00700000 - 007028c0 (excludes vreg_armrst) g2_aica_dma((uint32_t)0x00700000, (int)zero, 0x28c0); g2_aica_dma_wait_complete(); // dsp : 00703000 - 007045c8 g2_aica_dma((uint32_t)0x00703000, (int)zero, 0x15e0); g2_aica_dma_wait_complete(); printf("i[0] start %d size %d\n", xm.sample_data_offset[0], s32(&xm.sample_header[0]->sample_length)); for (int i = 0; i < 16; i++) { serial::hexlify(&sample_data[i * 16], 16); } printf("transfer %08x %08x %d\n", (int)aica_wave_memory, (int)sample_data, sample_data_ix); // wave memory g2_aica_dma((int)aica_wave_memory, (int)sample_data, (sample_data_ix + 31) & (~31)); g2_aica_dma_wait_complete(); g2_aica_dma((int)aica_wave_memory, (int)sample_data, (sample_data_ix + 31) & (~31)); g2_aica_dma_wait_complete(); /* for (int i = 0; i < 16; i++) { volatile uint8_t * s = &((volatile uint8_t*)aica_wave_memory)[i * 16]; for (int j = 0; j < 16; j++) { wait(); serial::hexlify(s[j]); serial::character(' '); } serial::character('\n'); } */ sh7091.TMU.TSTR = 0; // stop all timers sh7091.TMU.TOCR = tmu::tocr::tcoe::tclk_is_external_clock_or_input_capture; sh7091.TMU.TCR0 = tmu::tcr0::tpsc::p_phi_256; // 256 / 50MHz = 5.12 μs ; underflows in ~1 hour sh7091.TMU.TCOR0 = 0xffff'ffff; sh7091.TMU.TCNT0 = 0xffff'ffff; sh7091.TMU.TSTR = tmu::tstr::str0::counter_start; wait(); aica_sound.common.dmea0_mrwinh = aica::dmea0_mrwinh::MRWINH(0b0001); /* wait(); aica_sound.channel[0].KYONB(1); wait(); aica_sound.channel[0].LPCTL(1); wait(); aica_sound.channel[0].PCMS(0); wait(); aica_sound.channel[0].LSA(0); wait(); aica_sound.channel[0].LEA(44100); wait(); aica_sound.channel[0].D2R(0x0); wait(); aica_sound.channel[0].D1R(0x0); wait(); aica_sound.channel[0].RR(0x0); wait(); aica_sound.channel[0].AR(0x1f); wait(); aica_sound.channel[0].OCT(-3); wait(); aica_sound.channel[0].FNS(0); wait(); aica_sound.channel[0].DISDL(0xf); wait(); aica_sound.channel[0].DIPAN(0x0); wait(); aica_sound.channel[0].Q(0b00100); wait(); aica_sound.channel[0].TL(0); wait(); aica_sound.channel[0].LPOFF(1); wait(); aica_sound.common.mono_mem8mb_dac18b_ver_mvol = aica::mono_mem8mb_dac18b_ver_mvol::MONO(0) // enable panpots | aica::mono_mem8mb_dac18b_ver_mvol::MEM8MB(0) // 16Mbit SDRAM | aica::mono_mem8mb_dac18b_ver_mvol::DAC18B(0) // 16-bit DAC | aica::mono_mem8mb_dac18b_ver_mvol::MVOL(0xf) // 15/15 volume ; wait(); aica_sound.channel[0].SA(xm.sample_data_offset[0]); int lsa = xm.sample_header[0]->sample_loop_start / 2; int lea = xm.sample_header[0]->sample_loop_length / 2; printf("sa %d lsa %d lea %d\n", xm.sample_data_offset[0], lsa, lsa + lea); wait(); aica_sound.channel[0].LSA(lsa); wait(); aica_sound.channel[0].LEA(lsa + lea); wait(); aica_sound.channel[0].KYONB(1); wait(); aica_sound.channel[0].KYONEX(1); */ while (1) { } }