example/aica_xm: implement XM ticks

This commit is contained in:
Zack Buhman 2025-06-18 09:11:38 -05:00
parent 45d8853bbc
commit e108c1eeb5
2 changed files with 151 additions and 145 deletions

View File

@ -13,7 +13,8 @@ AICA_XM_OBJ = \
printf/printf.o \ printf/printf.o \
printf/unparse.o \ printf/unparse.o \
printf/parse.o \ printf/parse.o \
xm/milkypack01.xm.o xm/milkypack01.xm.o \
$(LIBGCC)
example/aica/aica_xm.elf: LDSCRIPT = $(LIB)/main.lds example/aica/aica_xm.elf: LDSCRIPT = $(LIB)/main.lds
example/aica/aica_xm.elf: $(START_OBJ) $(AICA_XM_OBJ) example/aica/aica_xm.elf: $(START_OBJ) $(AICA_XM_OBJ)

View File

@ -29,6 +29,17 @@ struct xm_state {
xm_state xm = {0}; xm_state xm = {0};
struct interpreter_state {
int tick_rate;
int ticks_per_line;
int tick;
int pattern_break;
int pattern_index;
int line_index; // within the current pattern (for debugging)
int note_offset; // within the current pattern
int next_note_offset;
};
void print_u8(int8_t * chars, int length, const char * end) void print_u8(int8_t * chars, int length, const char * end)
{ {
for (int i = 0; i < length; i++) { for (int i = 0; i < length; i++) {
@ -59,7 +70,7 @@ int s32(void * buf)
return v; return v;
} }
uint8_t __attribute__((aligned(32))) sample_data[512 * 1024]; uint8_t __attribute__((aligned(32))) sample_data[1024 * 1024];
int sample_data_ix; int sample_data_ix;
int unpack_sample(int buf, int offset, xm_sample_header_t * sample_header) int unpack_sample(int buf, int offset, xm_sample_header_t * sample_header)
@ -202,95 +213,6 @@ void writeback(void const * const buf, uint32_t size)
} }
} }
static xm_pattern_format_t column[8];
void debug_pattern_format(int note_ix, xm_pattern_format_t * pf)
{
/*
printf("note[%d]\n", note_ix);
printf(" note: %d\n", pf->note);
printf(" instrument: %d\n", pf->instrument);
printf(" volume_column_byte: %d\n", pf->volume_column_byte);
printf(" effect_type: %d\n", pf->effect_type);
printf(" effect_parameter: %d\n", pf->effect_parameter);
*/
column[note_ix & 7].note = pf->note;
column[note_ix & 7].instrument = pf->instrument;
column[note_ix & 7].volume_column_byte = pf->volume_column_byte;
column[note_ix & 7].effect_type = pf->effect_type;
column[note_ix & 7].effect_parameter = pf->effect_parameter;
if ((note_ix & 7) == 7) {
printf("%3d |", note_ix / 8);
for (int i = 0; i < 8; i++)
printf(" n:%2d i:%2d |",
column[i].note, column[i].instrument);
printf("\n");
}
}
void debug_pattern(xm_pattern_header_t * pattern_header, int pattern_ix)
{
uint8_t * pattern = (uint8_t *)(((int)pattern_header) + s32(&pattern_header->pattern_header_length));
int ix = pattern_ix;
int note_ix = 0;
int end = s16(&pattern_header->packed_pattern_data_size);
while (ix < end) {
int p = pattern[ix];
if (p & 0x80) {
ix += 1;
xm_pattern_format_t pf = {};
if (p & (1 << 0))
pf.note = pattern[ix++];
if (p & (1 << 1))
pf.instrument = pattern[ix++];
if (p & (1 << 2))
pf.volume_column_byte = pattern[ix++];
if (p & (1 << 3))
pf.effect_type = pattern[ix++];
if (p & (1 << 4))
pf.effect_parameter = pattern[ix++];
debug_pattern_format(note_ix, &pf);
} else {
xm_pattern_format_t * pf = (xm_pattern_format_t *)&pattern[ix];
debug_pattern_format(note_ix, pf);
ix += 5;
}
note_ix += 1;
}
assert(ix == s16(&pattern_header->packed_pattern_data_size));
}
void debug_pattern1(xm_pattern_header_t * pattern_header, int pattern_ix, int len, int& note_ix)
{
uint8_t * pattern = (uint8_t *)(((int)pattern_header) + s32(&pattern_header->pattern_header_length));
int ix = pattern_ix;
int end = note_ix + len;
while (note_ix < end) {
int p = pattern[ix];
if (p & 0x80) {
ix += 1;
xm_pattern_format_t pf = {};
if (p & (1 << 0))
pf.note = pattern[ix++];
if (p & (1 << 1))
pf.instrument = pattern[ix++];
if (p & (1 << 2))
pf.volume_column_byte = pattern[ix++];
if (p & (1 << 3))
pf.effect_type = pattern[ix++];
if (p & (1 << 4))
pf.effect_parameter = pattern[ix++];
debug_pattern_format(note_ix, &pf);
} else {
xm_pattern_format_t * pf = (xm_pattern_format_t *)&pattern[ix];
debug_pattern_format(note_ix, pf);
ix += 5;
}
note_ix += 1;
}
}
uint16_t uint16_t
note_to_oct_fns(const int8_t note) note_to_oct_fns(const int8_t note)
{ {
@ -318,19 +240,52 @@ note_to_oct_fns(const int8_t note)
const uint16_t cent = (a440_note < 0) ? 12 + mod12 : mod12; const uint16_t cent = (a440_note < 0) ? 12 + mod12 : mod12;
const uint16_t fns = _cent_to_fns[cent]; const uint16_t fns = _cent_to_fns[cent];
return aica::oct_fns::OCT(oct - 3) | aica::oct_fns::FNS(fns); return aica::oct_fns::OCT(oct - 1) | aica::oct_fns::FNS(fns);
} }
void pattern_note(int ch, xm_pattern_format_t * pf, int rekey) void debug_note(interpreter_state& state, int ch, xm_pattern_format_t * pf)
{
static xm_pattern_format_t column[8];
/*
printf("note[%d]\n", note_ix);
printf(" note: %d\n", pf->note);
printf(" instrument: %d\n", pf->instrument);
printf(" volume_column_byte: %d\n", pf->volume_column_byte);
printf(" effect_type: %d\n", pf->effect_type);
printf(" effect_parameter: %d\n", pf->effect_parameter);
*/
column[ch].note = pf->note;
column[ch].instrument = pf->instrument;
column[ch].volume_column_byte = pf->volume_column_byte;
column[ch].effect_type = pf->effect_type;
column[ch].effect_parameter = pf->effect_parameter;
if (ch == 7) {
printf("%3d %3d |", state.pattern_index, state.line_index);
for (int i = 0; i < 8; i++)
printf(" n:%2d i:%2d e:%2x,%2x |",
column[i].note,
column[i].instrument,
column[i].effect_type,
column[i].effect_parameter);
printf("\n");
}
}
void play_note_effect(interpreter_state& state, int ch, xm_pattern_format_t * pf)
{
switch (pf->effect_type) {
case 0xD:
state.pattern_break = pf->effect_parameter;
break;
}
}
void play_note(interpreter_state& state, int ch, xm_pattern_format_t * pf)
{ {
if (pf->note == 97) { if (pf->note == 97) {
if (!rekey) {
wait(); aica_sound.channel[ch].KYONB(0); wait(); aica_sound.channel[ch].KYONB(0);
}
} else if (pf->note != 0 && pf->instrument != 0) { } else if (pf->note != 0 && pf->instrument != 0) {
if (rekey) {
wait(); aica_sound.channel[ch].KYONB(0);
} else {
wait(); aica_sound.channel[ch].SA(xm.sample_data_offset[pf->instrument - 1]); wait(); aica_sound.channel[ch].SA(xm.sample_data_offset[pf->instrument - 1]);
int lsa = xm.sample_header[pf->instrument - 1]->sample_loop_start / 2; int lsa = xm.sample_header[pf->instrument - 1]->sample_loop_start / 2;
int lea = xm.sample_header[pf->instrument - 1]->sample_loop_length / 2; int lea = xm.sample_header[pf->instrument - 1]->sample_loop_length / 2;
@ -339,38 +294,66 @@ void pattern_note(int ch, xm_pattern_format_t * pf, int rekey)
wait(); aica_sound.channel[ch].oct_fns = note_to_oct_fns(pf->note); wait(); aica_sound.channel[ch].oct_fns = note_to_oct_fns(pf->note);
wait(); aica_sound.channel[ch].KYONB(1); wait(); aica_sound.channel[ch].KYONB(1);
} }
play_note_effect(state, ch, pf);
}
void play_debug_note(interpreter_state& state, int ch, xm_pattern_format_t * pf)
{
debug_note(state, ch, pf);
play_note(state, ch, pf);
}
void rekey_note(interpreter_state& state, int ch, xm_pattern_format_t * pf)
{
if (pf->note == 97) {
} else if (pf->note != 0 && pf->instrument != 0) {
wait(); aica_sound.channel[ch].KYONB(0);
} }
} }
int pattern_channels(xm_pattern_header_t * pattern_header, int pattern_ix, int rekey) int parse_pattern_line(interpreter_state& state, xm_pattern_header_t * pattern_header, int note_offset, void (*func)(interpreter_state&, int, xm_pattern_format_t*))
{ {
uint8_t * pattern = (uint8_t *)(((int)pattern_header) + s32(&pattern_header->pattern_header_length)); uint8_t * pattern = (uint8_t *)(((int)pattern_header) + s32(&pattern_header->pattern_header_length));
for (int i = 0; i < 8; i++) { for (int i = 0; i < 8; i++) {
int p = pattern[pattern_ix]; int p = pattern[note_offset];
if (p & 0x80) { if (p & 0x80) {
pattern_ix += 1; note_offset += 1;
xm_pattern_format_t pf = {}; xm_pattern_format_t pf = {};
if (p & (1 << 0)) if (p & (1 << 0))
pf.note = pattern[pattern_ix++]; pf.note = pattern[note_offset++];
if (p & (1 << 1)) if (p & (1 << 1))
pf.instrument = pattern[pattern_ix++]; pf.instrument = pattern[note_offset++];
if (p & (1 << 2)) if (p & (1 << 2))
pf.volume_column_byte = pattern[pattern_ix++]; pf.volume_column_byte = pattern[note_offset++];
if (p & (1 << 3)) if (p & (1 << 3))
pf.effect_type = pattern[pattern_ix++]; pf.effect_type = pattern[note_offset++];
if (p & (1 << 4)) if (p & (1 << 4))
pf.effect_parameter = pattern[pattern_ix++]; pf.effect_parameter = pattern[note_offset++];
pattern_note(i, &pf, rekey); func(state, i, &pf);
} else { } else {
xm_pattern_format_t * pf = (xm_pattern_format_t *)&pattern[pattern_ix]; xm_pattern_format_t * pf = (xm_pattern_format_t *)&pattern[note_offset];
pattern_note(i, pf, rekey); func(state, i, pf);
pattern_ix += 5; note_offset += 5;
} }
} }
return pattern_ix; return note_offset;
} }
void next_pattern(interpreter_state& state, int pattern_break)
{
state.line_index = 0;
state.note_offset = 0;
state.next_note_offset = 0;
state.pattern_break = -1;
/*
state.pattern_index += 1;
if (state.pattern_index >= 0xe)
state.pattern_index = 0;
*/
}
uint8_t __attribute__((aligned(32))) zero[0x28c0] = {}; uint8_t __attribute__((aligned(32))) zero[0x28c0] = {};
@ -477,42 +460,64 @@ void main()
//wait(); aica_sound.channel[0].KYONB(1); //wait(); aica_sound.channel[0].KYONB(1);
//wait(); aica_sound.channel[0].KYONEX(1); //wait(); aica_sound.channel[0].KYONEX(1);
int tick = 0; // 195 = 1ms
// 2500 / bpm milliseconds
//debug_pattern(xm.pattern_header[12], 0); printf("default_bpm %d\n", xm.header->default_bpm);
printf("default_tempo %d\n", xm.header->default_tempo);
int ix_ix = 0; struct interpreter_state state;
int pattern_ix = 0;
int note_ix = 0;
printf("pattern %d\n", ix_ix); state.tick_rate = 195.32 * 2500 / xm.header->default_bpm;
state.ticks_per_line = xm.header->default_tempo;
state.tick = 0;
state.pattern_break = -1;
state.pattern_index = 0;
state.line_index = 0;
state.note_offset = 0;
state.next_note_offset = 0;
while (1) { printf("tick_rate %d\n", state.tick_rate);
xm_pattern_header_t * pattern_header = xm.pattern_header[ix_ix];
int pattern_data_size = s16(&pattern_header->packed_pattern_data_size); printf("pattern %d\n", state.pattern_index);
int start = sh7091.TMU.TCNT0; int start = sh7091.TMU.TCNT0;
while (1) {
xm_pattern_header_t * pattern_header = xm.pattern_header[state.pattern_index];
int pattern_data_size = s16(&pattern_header->packed_pattern_data_size);
int end = sh7091.TMU.TCNT0; int end = sh7091.TMU.TCNT0;
while ((start - end) < 30000) { while ((start - end) < (state.tick_rate / 2)) {
end = sh7091.TMU.TCNT0; end = sh7091.TMU.TCNT0;
} }
start = sh7091.TMU.TCNT0;
debug_pattern1(pattern_header, pattern_ix, 8, note_ix); if ((state.tick + 1) % (state.ticks_per_line * 2) == 0) {
pattern_channels(pattern_header, pattern_ix, true); // rekey // execute keyoffs
parse_pattern_line(state, pattern_header, state.next_note_offset, rekey_note);
wait(); aica_sound.channel[0].KYONEX(1); wait(); aica_sound.channel[0].KYONEX(1);
pattern_ix = pattern_channels(pattern_header, pattern_ix, false);
wait(); aica_sound.channel[0].KYONEX(1);
if (pattern_ix >= pattern_data_size) {
note_ix = 0;
pattern_ix = 0;
ix_ix += 1;
if (ix_ix >= 0xe)
ix_ix = 0;
printf("pattern %d\n", ix_ix);
} }
tick += 1; bool note_tick = state.tick % (state.ticks_per_line * 2) == 0;
bool effect_tick = (state.tick & 1) == 0;
if (note_tick) {
state.note_offset = state.next_note_offset;
//state.next_note_offset = parse_pattern_line(state, pattern_header, state.note_offset, play_debug_note);
state.next_note_offset = parse_pattern_line(state, pattern_header, state.note_offset, play_note);
state.line_index += 1;
wait(); aica_sound.channel[0].KYONEX(1);
}
if (effect_tick && !note_tick) {
// execute effects
state.next_note_offset = parse_pattern_line(state, pattern_header, state.note_offset, play_note_effect);
}
if (state.pattern_break >= 0 || state.next_note_offset >= pattern_data_size) {
next_pattern(state, -1);
}
state.tick += 1;
} }
while (1); while (1);