dreamcast2: add sierpinski_tetrahedron_fsaa_yscaler

This commit is contained in:
Zack Buhman 2025-08-28 18:20:43 -05:00
parent 9b7eae231a
commit 74a8e073bc
4 changed files with 916 additions and 7 deletions

View File

@ -39,6 +39,12 @@ TRIANGLE_TA_FULLSCREEN_OBJ = \
example/triangle_ta_fullscreen.elf: LDSCRIPT = $(LIB)/main.lds
example/triangle_ta_fullscreen.elf: $(START_OBJ) $(TRIANGLE_TA_FULLSCREEN_OBJ)
TRIANGLE_TA_LIST_CONT_OBJ = \
example/triangle_ta_list_cont.o
example/triangle_ta_list_cont.elf: LDSCRIPT = $(LIB)/main.lds
example/triangle_ta_list_cont.elf: $(START_OBJ) $(TRIANGLE_TA_LIST_CONT_OBJ)
CUBE_TA_FULLSCREEN_TEXTURED_OBJ = \
holly/core/region_array.o \
example/cube_ta_fullscreen_textured.o
@ -66,3 +72,10 @@ SIERPINSKI_TETRAHEDRON_FSAA_OBJ = \
example/sierpinski_tetrahedron_fsaa.elf: LDSCRIPT = $(LIB)/main.lds
example/sierpinski_tetrahedron_fsaa.elf: $(START_OBJ) $(SIERPINSKI_TETRAHEDRON_FSAA_OBJ)
SIERPINSKI_TETRAHEDRON_FSAA_YSCALER_OBJ = \
holly/core/region_array.o \
example/sierpinski_tetrahedron_fsaa_yscaler.o
example/sierpinski_tetrahedron_fsaa_yscaler.elf: LDSCRIPT = $(LIB)/main.lds
example/sierpinski_tetrahedron_fsaa_yscaler.elf: $(START_OBJ) $(SIERPINSKI_TETRAHEDRON_FSAA_YSCALER_OBJ)

View File

@ -0,0 +1,543 @@
#include "memorymap.hpp"
#include "holly/core/object_list_bits.hpp"
#include "holly/core/region_array.hpp"
#include "holly/core/region_array_bits.hpp"
#include "holly/core/parameter_bits.hpp"
#include "holly/core/parameter.hpp"
#include "holly/ta/global_parameter.hpp"
#include "holly/ta/vertex_parameter.hpp"
#include "holly/ta/parameter_bits.hpp"
#include "holly/holly.hpp"
#include "holly/holly_bits.hpp"
#include "sh7091/sh7091.hpp"
#include "sh7091/sh7091_bits.hpp"
#include "sh7091/pref.hpp"
#include "sh7091/store_queue_transfer.hpp"
#include "systembus/systembus.hpp"
#include "systembus/systembus_bits.hpp"
// A blue
// B black
// C red
// D green
// A blue
// B black
struct vec3 {
union {
float x;
float r;
};
union {
float y;
float g;
};
union {
float z;
float b;
};
};
struct vertex {
vec3 position;
vec3 color;
};
constexpr float s = 2.5;
static const vertex tetrahedron_vertex[] = {
{{ 0.500000 * s, -0.204124 * s, 0.288675 * s}, {0.0000, 0.0000, 1.0000}},
{{ 0.000000 * s, -0.204124 * s, -0.577350 * s}, {0.0000, 0.0000, 0.0000}},
{{-0.500000 * s, -0.204124 * s, 0.288675 * s}, {1.0000, 0.0000, 0.0000}},
{{ 0.000000 * s, 0.612372 * s, 0.000000 * s}, {0.0000, 1.0000, 0.0000}},
};
void transfer_background_polygon(uint32_t isp_tsp_parameter_start)
{
using namespace holly::core::parameter;
using parameter = isp_tsp_parameter<3>;
volatile parameter * polygon = (volatile parameter *)&texture_memory32[isp_tsp_parameter_start];
polygon->isp_tsp_instruction_word = isp_tsp_instruction_word::depth_compare_mode::always
| isp_tsp_instruction_word::culling_mode::no_culling;
polygon->tsp_instruction_word = tsp_instruction_word::src_alpha_instr::one
| tsp_instruction_word::dst_alpha_instr::zero
| tsp_instruction_word::fog_control::no_fog;
polygon->texture_control_word = 0;
polygon->vertex[0].x = 0.0f;
polygon->vertex[0].y = 0.0f;
polygon->vertex[0].z = 0.00001f;
polygon->vertex[0].base_color = 0xff00ff;
polygon->vertex[1].x = 32.0f;
polygon->vertex[1].y = 0.0f;
polygon->vertex[1].z = 0.00001f;
polygon->vertex[1].base_color = 0xff00ff;
polygon->vertex[2].x = 32.0f;
polygon->vertex[2].y = 32.0f;
polygon->vertex[2].z = 0.00001f;
polygon->vertex[2].base_color = 0xff00ff;
}
template <typename T>
static inline void store_queue_destination_address(T address) {
using namespace sh7091;
using sh7091::sh7091;
// set the store queue destination address to the TA Polygon Converter FIFO
sh7091.CCN.QACR0 = sh7091::ccn::qacr0::address<T>(address);
sh7091.CCN.QACR1 = sh7091::ccn::qacr1::address<T>(address);
}
static inline uint32_t transfer_ta_global_end_of_list(uint32_t store_queue_ix)
{
using namespace holly::ta;
using namespace holly::ta::parameter;
//
// TA "end of list" global transfer
//
volatile global_parameter::end_of_list * end_of_list = (volatile global_parameter::end_of_list *)&store_queue[store_queue_ix];
store_queue_ix += (sizeof (global_parameter::end_of_list));
end_of_list->parameter_control_word = parameter_control_word::para_type::end_of_list;
// start store queue transfer of `end_of_list` to the TA
pref(end_of_list);
return store_queue_ix;
}
static inline uint32_t transfer_ta_global_polygon(uint32_t store_queue_ix)
{
using namespace holly::core::parameter;
using namespace holly::ta;
using namespace holly::ta::parameter;
//
// TA polygon global transfer
//
volatile global_parameter::polygon_type_0 * polygon = (volatile global_parameter::polygon_type_0 *)&store_queue[store_queue_ix];
store_queue_ix += (sizeof (global_parameter::polygon_type_0));
polygon->parameter_control_word = parameter_control_word::para_type::polygon_or_modifier_volume
| parameter_control_word::list_type::opaque
| parameter_control_word::col_type::floating_color
| parameter_control_word::gouraud;
polygon->isp_tsp_instruction_word = isp_tsp_instruction_word::depth_compare_mode::greater
| isp_tsp_instruction_word::culling_mode::cull_if_negative;
// Note that it is not possible to use
// ISP_TSP_INSTRUCTION_WORD::GOURAUD_SHADING in this isp_tsp_instruction_word,
// because `gouraud` is one of the bits overwritten by the value in
// parameter_control_word. See DCDBSysArc990907E.pdf page 200.
polygon->tsp_instruction_word = tsp_instruction_word::src_alpha_instr::one
| tsp_instruction_word::dst_alpha_instr::zero
| tsp_instruction_word::fog_control::no_fog;
polygon->texture_control_word = 0;
polygon->data_size_for_sort_dma = 0;
polygon->next_address_for_sort_dma = 0;
// start store queue transfer of `polygon` to the TA
pref(polygon);
return store_queue_ix;
}
static inline uint32_t transfer_ta_vertex_tetrahedron(uint32_t store_queue_ix,
const vec3& ap, const vec3& ac,
const vec3& bp, const vec3& bc,
const vec3& cp, const vec3& cc,
const vec3& dp, const vec3& dc)
{
using namespace holly::ta;
using namespace holly::ta::parameter;
if (ap.z <= 0 || bp.z <= 0 || cp.z <= 0 || dp.z <= 0)
return store_queue_ix;
//
// TA polygon vertex transfer
//
volatile vertex_parameter::polygon_type_1 * vertex = (volatile vertex_parameter::polygon_type_1 *)&store_queue[store_queue_ix];
store_queue_ix += (sizeof (vertex_parameter::polygon_type_1)) * 6;
#define transfer_vertex(n, p, c, pcw) \
vertex[n].parameter_control_word = pcw; \
vertex[n].x = p.x; \
vertex[n].y = p.y; \
vertex[n].z = p.z; \
vertex[n].base_color_r = c.r; \
vertex[n].base_color_g = c.g; \
vertex[n].base_color_b = c.b; \
pref(&vertex[n]);
store_queue_destination_address(ta_fifo_polygon_converter);
transfer_vertex(0, ap, ac, parameter_control_word::para_type::vertex_parameter);
transfer_vertex(1, bp, bc, parameter_control_word::para_type::vertex_parameter);
transfer_vertex(2, cp, cc, parameter_control_word::para_type::vertex_parameter);
transfer_vertex(3, dp, dc, parameter_control_word::para_type::vertex_parameter);
transfer_vertex(4, ap, ac, parameter_control_word::para_type::vertex_parameter);
transfer_vertex(5, bp, bc, parameter_control_word::para_type::vertex_parameter | parameter_control_word::end_of_strip);
#undef transfer_vertex
return store_queue_ix;
}
#define cos(n) __builtin_cosf(n)
#define sin(n) __builtin_sinf(n)
static float theta = 0;
static inline vec3 vertex_rotate(vec3 v, float cost, float sint)
{
// to make the cube's appearance more interesting, rotate the vertex on two
// axes
float x0 = v.x;
float y0 = v.y;
float z0 = v.z;
float x1 = x0 * cost - z0 * sint;
float y1 = y0;
float z1 = x0 * sint + z0 * cost;
float x2 = x1;
float y2 = y1 * cost - z1 * sint;
float z2 = y1 * sint + z1 * cost;
return (vec3){x2, y2, z2};
}
static inline vec3 vertex_perspective_divide(vec3 v)
{
float w = 1.0f / (v.z + 1.f);
return (vec3){v.x * w, v.y * w, w};
}
static int y_offset = 0;
static inline vec3 vertex_screen_space(vec3 v)
{
return (vec3){
v.x * 480.f + 640.f,
v.y * 480.f + 480.f + y_offset,
v.z,
};
}
static uint32_t store_queue_ix = 0;
static float cost;
static float sint;
static inline void tetrahedron(vec3 a, vec3 b, vec3 c, vec3 d)
{
vec3 ap = vertex_screen_space(
vertex_perspective_divide(
vertex_rotate(a, cost, sint)));
vec3 bp = vertex_screen_space(
vertex_perspective_divide(
vertex_rotate(b, cost, sint)));
vec3 cp = vertex_screen_space(
vertex_perspective_divide(
vertex_rotate(c, cost, sint)));
vec3 dp = vertex_screen_space(
vertex_perspective_divide(
vertex_rotate(d, cost, sint)));
const vec3& ac = tetrahedron_vertex[0].color;
const vec3& bc = tetrahedron_vertex[1].color;
const vec3& cc = tetrahedron_vertex[2].color;
const vec3& dc = tetrahedron_vertex[3].color;
store_queue_ix = transfer_ta_vertex_tetrahedron(store_queue_ix,
ap, ac,
bp, bc,
cp, cc,
dp, dc);
}
static inline vec3 midpoint(const vec3& a, const vec3& b)
{
return {(a.x + b.x) * 0.5f,
(a.y + b.y) * 0.5f,
(a.z + b.z) * 0.5f};
}
static void subdivide(vec3 a, vec3 b, vec3 c, vec3 d,
int depth)
{
if (depth == 0) {
tetrahedron(a, b, c, d);
} else {
/*
B
/ \
A---C
*/
vec3 ab = midpoint(a, b);
vec3 ac = midpoint(a, c);
vec3 ad = midpoint(a, d);
vec3 bc = midpoint(b, c);
vec3 bd = midpoint(b, d);
vec3 cd = midpoint(c, d);
/*
b ----
/ \ \
ab bc \
/ \ \
a---ac---c--cd--d
*/
subdivide( a, ab, ac, ad, depth - 1);
subdivide(ab, b, bc, bd, depth - 1);
subdivide(ac, bc, c, cd, depth - 1);
subdivide(ad, bd, cd, d, depth - 1);
}
}
void transfer_ta_sierpinski_tetrahedron()
{
store_queue_destination_address(ta_fifo_polygon_converter);
store_queue_ix = 0;
store_queue_ix = transfer_ta_global_polygon(store_queue_ix);
cost = cos(theta);
sint = sin(theta);
subdivide(tetrahedron_vertex[0].position,
tetrahedron_vertex[1].position,
tetrahedron_vertex[2].position,
tetrahedron_vertex[3].position,
6);
store_queue_ix = transfer_ta_global_end_of_list(store_queue_ix);
}
void main()
{
/*
a very simple memory map:
the ordering within texture memory is not significant, and could be
anything
*/
uint32_t framebuffer_start[2] = {0x000000, 0x12c000};
uint32_t region_array_start = 0x258000;
uint32_t isp_tsp_parameter_start = 0x400000;
uint32_t object_list_start = 0x300000;
const int tile_y_num = 480 / 32;
const int tile_x_num = 1280 / 32;
using namespace holly::core;
region_array::list_block_size list_block_size = {
.opaque = 8 * 4,
};
region_array::transfer(tile_x_num,
tile_y_num,
list_block_size,
region_array_start,
object_list_start);
region_array::transfer(tile_x_num,
tile_y_num,
list_block_size,
region_array_start + tile_x_num * tile_y_num * 6 * 4,
object_list_start + tile_x_num * tile_y_num * 8 * 4);
transfer_background_polygon(isp_tsp_parameter_start);
sh7091::store_queue_transfer::zeroize((void *)&texture_memory32[framebuffer_start[0]], 640 * 480 * 4 * 2, 0);
//////////////////////////////////////////////////////////////////////////////
// configure the TA
//////////////////////////////////////////////////////////////////////////////
using namespace holly;
using holly::holly;
// TA_GLOB_TILE_CLIP restricts which "object pointer blocks" are written
// to.
//
// This can also be used to implement "windowing", as long as the desired
// window size happens to be a multiple of 32 pixels. The "User Tile Clip" TA
// control parameter can also ~equivalently be used as many times as desired
// within a single TA initialization to produce an identical effect.
//
// See DCDBSysArc990907E.pdf page 183.
holly.TA_GLOB_TILE_CLIP = ta_glob_tile_clip::tile_y_num(tile_y_num - 1)
| ta_glob_tile_clip::tile_x_num(tile_x_num - 1);
// While CORE supports arbitrary-length object lists, the TA uses "object
// pointer blocks" as a memory allocation strategy. These fixed-length blocks
// can still have infinite length via "object pointer block links". This
// mechanism is illustrated in DCDBSysArc990907E.pdf page 188.
holly.TA_ALLOC_CTRL = ta_alloc_ctrl::opb_mode::increasing_addresses
| ta_alloc_ctrl::o_opb::_8x4byte;
// While building object lists, the TA contains an internal index (exposed as
// the read-only TA_ITP_CURRENT) for the next address that new ISP/TSP will be
// stored at. The initial value of this index is TA_ISP_BASE.
// reserve space in ISP/TSP parameters for the background parameter
using polygon = holly::core::parameter::isp_tsp_parameter<3>;
uint32_t ta_isp_base_offset = (sizeof (polygon)) * 1;
holly.TA_ISP_BASE = isp_tsp_parameter_start + ta_isp_base_offset;
holly.TA_ISP_LIMIT = isp_tsp_parameter_start + 0x400000;
// Similarly, the TA also contains, for up to 600 tiles, an internal index for
// the next address that an object list entry will be stored for each
// tile. These internal indicies are partially exposed via the read-only
// TA_OL_POINTERS.
holly.TA_OL_BASE = object_list_start;
// TA_OL_LIMIT, DCDBSysArc990907E.pdf page 385:
//
// > Because the TA may automatically store data in the address that is
// > specified by this register, it must not be used for other data. For
// > example, the address specified here must not be the same as the address
// > in the TA_ISP_BASE register.
holly.TA_OL_LIMIT = object_list_start + 0x200000 - 32;
holly.TA_NEXT_OPB_INIT = (object_list_start + 8 * 4 * tile_y_num * tile_x_num * 2);
//////////////////////////////////////////////////////////////////////////////
// configure CORE
//////////////////////////////////////////////////////////////////////////////
// PARAM_BASE is the (texture memory-relative) address of ISP/TSP parameters.
// Anything that references an ISP/TSP parameter does so relative to this
// address (and not relative to the beginning of texture memory).
holly.PARAM_BASE = isp_tsp_parameter_start;
// Set the offset of the background ISP/TSP parameter, relative to PARAM_BASE
// SKIP is related to the size of each vertex
uint32_t background_offset = 0;
holly.ISP_BACKGND_T = isp_backgnd_t::tag_address(background_offset / 4)
| isp_backgnd_t::tag_offset(0)
| isp_backgnd_t::skip(1);
holly.SCALER_CTL = scaler_ctl::horizontal_scaling_enable
| scaler_ctl::vertical_scale_factor(0x0800);
holly.SOFTRESET = softreset::pipeline_soft_reset;
holly.SOFTRESET = 0;
theta = 0;
for (int i = 0; i < 1000 - 1; i++) {
using systembus::systembus;
using namespace systembus;
//////////////////////////////////////////////////////////////////////////////
// transfer cube to texture memory via the TA polygon converter FIFO
//////////////////////////////////////////////////////////////////////////////
holly.TA_OL_BASE = object_list_start;
holly.TA_LIST_INIT = ta_list_init::list_init;
volatile uint32_t init = holly.TA_LIST_INIT;
(void)init;
y_offset = 0;
transfer_ta_sierpinski_tetrahedron();
while ((systembus.ISTNRM & istnrm::end_of_transferring_opaque_list) == 0);
systembus.ISTNRM = istnrm::end_of_transferring_opaque_list;
//////////////////////////////////////////////////////////////////////////////
// start the actual rasterization
//////////////////////////////////////////////////////////////////////////////
holly.FB_W_SOF1 = framebuffer_start[i & 1];
// REGION_BASE is the (texture memory-relative) address of the region array.
holly.REGION_BASE = region_array_start;
// start the actual render--the rendering process begins by interpreting the
// region array
holly.STARTRENDER = 1;
while ((systembus.ISTNRM & istnrm::end_of_render_tsp) == 0);
systembus.ISTNRM = istnrm::end_of_render_tsp
| istnrm::end_of_render_isp
| istnrm::end_of_render_video;
//////////////////////////////////////////////////////////////////////////////
// transfer cube to texture memory via the TA polygon converter FIFO
//////////////////////////////////////////////////////////////////////////////
holly.TA_OL_BASE = object_list_start + 8 * 4 * tile_y_num * tile_x_num;
holly.TA_LIST_CONT = ta_list_cont::list_cont;
volatile uint32_t cont = holly.TA_LIST_CONT;
(void)cont;
y_offset = -480;
transfer_ta_sierpinski_tetrahedron();
while ((systembus.ISTNRM & istnrm::end_of_transferring_opaque_list) == 0);
systembus.ISTNRM = istnrm::end_of_transferring_opaque_list;
//////////////////////////////////////////////////////////////////////////////
// start the actual rasterization
//////////////////////////////////////////////////////////////////////////////
holly.FB_W_SOF1 = framebuffer_start[i & 1] + 640 * 240 * 4;
// REGION_BASE is the (texture memory-relative) address of the region array.
holly.REGION_BASE = region_array_start + tile_x_num * tile_y_num * 6 * 4;
// start the actual render--the rendering process begins by interpreting the
// region array
holly.STARTRENDER = 1;
while ((systembus.ISTNRM & istnrm::end_of_render_tsp) == 0);
systembus.ISTNRM = istnrm::end_of_render_tsp
| istnrm::end_of_render_isp
| istnrm::end_of_render_video;
//////////////////////////////////////////////////////////////////////////////
// wait for vertical synchronization
//////////////////////////////////////////////////////////////////////////////
while ((spg_status::vsync(holly.SPG_STATUS)));
while (!(spg_status::vsync(holly.SPG_STATUS)));
holly.FB_R_SOF1 = framebuffer_start[i & 1];
// next frame
theta += 0.001f;
}
// return from main; this will effectively jump back to the serial loader
}

View File

@ -0,0 +1,350 @@
#include "memorymap.hpp"
#include "holly/core/object_list_bits.hpp"
#include "holly/core/region_array.hpp"
#include "holly/core/region_array_bits.hpp"
#include "holly/core/parameter_bits.hpp"
#include "holly/core/parameter.hpp"
#include "holly/ta/global_parameter.hpp"
#include "holly/ta/vertex_parameter.hpp"
#include "holly/ta/parameter_bits.hpp"
#include "holly/holly.hpp"
#include "holly/holly_bits.hpp"
#include "sh7091/sh7091.hpp"
#include "sh7091/pref.hpp"
#include "systembus/systembus.hpp"
#include "systembus/systembus_bits.hpp"
void transfer_background_polygon(uint32_t isp_tsp_parameter_start)
{
using namespace holly::core::parameter;
using parameter = isp_tsp_parameter<3>;
volatile parameter * polygon = (volatile parameter *)&texture_memory32[isp_tsp_parameter_start];
polygon->isp_tsp_instruction_word = isp_tsp_instruction_word::depth_compare_mode::always
| isp_tsp_instruction_word::culling_mode::no_culling;
polygon->tsp_instruction_word = tsp_instruction_word::src_alpha_instr::one
| tsp_instruction_word::dst_alpha_instr::zero
| tsp_instruction_word::fog_control::no_fog;
polygon->texture_control_word = 0;
polygon->vertex[0].x = 0.0f;
polygon->vertex[0].y = 0.0f;
polygon->vertex[0].z = 0.00001f;
polygon->vertex[0].base_color = 0xff00ff;
polygon->vertex[1].x = 32.0f;
polygon->vertex[1].y = 0.0f;
polygon->vertex[1].z = 0.00001f;
polygon->vertex[1].base_color = 0xff00ff;
polygon->vertex[2].x = 32.0f;
polygon->vertex[2].y = 32.0f;
polygon->vertex[2].z = 0.00001f;
polygon->vertex[2].base_color = 0xff00ff;
}
void transfer_ta_triangle(bool alt)
{
using namespace sh7091;
using sh7091::sh7091;
sh7091.CCN.QACR0 = sh7091::ccn::qacr0::address(ta_fifo_polygon_converter);
sh7091.CCN.QACR1 = sh7091::ccn::qacr1::address(ta_fifo_polygon_converter);
uint32_t store_queue_ix = 0;
using namespace holly::core::parameter;
using namespace holly::ta;
using namespace holly::ta::parameter;
//
// TA polygon global transfer
//
volatile global_parameter::polygon_type_0 * polygon = (volatile global_parameter::polygon_type_0 *)&store_queue[store_queue_ix];
store_queue_ix += (sizeof (global_parameter::polygon_type_0));
polygon->parameter_control_word = parameter_control_word::para_type::polygon_or_modifier_volume
| parameter_control_word::list_type::opaque
| parameter_control_word::col_type::packed_color
| parameter_control_word::gouraud;
polygon->isp_tsp_instruction_word = isp_tsp_instruction_word::depth_compare_mode::always
| isp_tsp_instruction_word::culling_mode::no_culling;
polygon->tsp_instruction_word = tsp_instruction_word::src_alpha_instr::one
| tsp_instruction_word::dst_alpha_instr::zero
| tsp_instruction_word::fog_control::no_fog;
pref(polygon);
//
// TA polygon vertex transfer
//
volatile vertex_parameter::polygon_type_0 * vertex = (volatile vertex_parameter::polygon_type_0 *)&store_queue[store_queue_ix];
store_queue_ix += (sizeof (vertex_parameter::polygon_type_0)) * 3;
// bottom left
vertex[0].parameter_control_word = parameter_control_word::para_type::vertex_parameter;
vertex[0].x = 1.0f;
vertex[0].y = 29.0f;
vertex[0].z = 0.1f;
vertex[0].base_color = alt ? 0xffff00 : 0xff0000; // red
// start store queue transfer of `vertex[0]` to the TA
pref(&vertex[0]);
// top center
vertex[1].parameter_control_word = parameter_control_word::para_type::vertex_parameter;
vertex[1].x = 16.0f;
vertex[1].y = 3.0f;
vertex[1].z = 0.1f;
vertex[1].base_color = alt ? 0x00ffff : 0x00ff00; // green
// start store queue transfer of `vertex[1]` to the TA
pref(&vertex[1]);
// bottom right
vertex[2].parameter_control_word = parameter_control_word::para_type::vertex_parameter
| parameter_control_word::end_of_strip;
vertex[2].x = 31.0f;
vertex[2].y = 29.0f;
vertex[2].z = 0.1f;
vertex[2].base_color = alt ? 0xff80ff : 0x0000ff; // blue
// start store queue transfer of `params[2]` to the TA
pref(&vertex[2]);
//
// TA "end of list" global transfer
//
volatile global_parameter::end_of_list * end_of_list = (volatile global_parameter::end_of_list *)&store_queue[store_queue_ix];
store_queue_ix += (sizeof (global_parameter::end_of_list));
end_of_list->parameter_control_word = parameter_control_word::para_type::end_of_list;
// start store queue transfer of `end_of_list` to the TA
pref(end_of_list);
}
void transfer_region_array(uint32_t region_array_start,
uint32_t opaque_list_pointer)
{
using namespace holly::core::region_array;
/*
Create a minimal region array with a single entry:
- one tile at tile coordinate (0, 0) with one opaque list pointer
*/
/*
Holly reads the region array from "32-bit" texture memory address space,
so the region array is correspondingly written from "32-bit" address space.
*/
volatile region_array_entry * region_array = (volatile region_array_entry *)&texture_memory32[region_array_start];
region_array[0].tile
= tile::y_position(0)
| tile::x_position(0);
region_array[0].list_pointer.opaque = list_pointer::object_list(opaque_list_pointer);
region_array[0].list_pointer.opaque_modifier_volume = list_pointer::empty;
region_array[0].list_pointer.translucent = list_pointer::empty;
region_array[0].list_pointer.translucent_modifier_volume = list_pointer::empty;
region_array[0].list_pointer.punch_through = list_pointer::empty;
region_array[1].tile
= tile::last_region
| tile::y_position(0)
| tile::x_position(1);
region_array[1].list_pointer.opaque = list_pointer::empty;
region_array[1].list_pointer.opaque_modifier_volume = list_pointer::empty;
region_array[1].list_pointer.translucent = list_pointer::empty;
region_array[1].list_pointer.translucent_modifier_volume = list_pointer::empty;
region_array[1].list_pointer.punch_through = list_pointer::empty;
region_array[2].tile
= tile::y_position(0)
| tile::x_position(0);
region_array[2].list_pointer.opaque = list_pointer::object_list(opaque_list_pointer + 8 * 4);
region_array[2].list_pointer.opaque_modifier_volume = list_pointer::empty;
region_array[2].list_pointer.translucent = list_pointer::empty;
region_array[2].list_pointer.translucent_modifier_volume = list_pointer::empty;
region_array[2].list_pointer.punch_through = list_pointer::empty;
region_array[3].tile
= tile::last_region
| tile::y_position(0)
| tile::x_position(1);
region_array[3].list_pointer.opaque = list_pointer::empty;
region_array[3].list_pointer.opaque_modifier_volume = list_pointer::empty;
region_array[3].list_pointer.translucent = list_pointer::empty;
region_array[3].list_pointer.translucent_modifier_volume = list_pointer::empty;
region_array[3].list_pointer.punch_through = list_pointer::empty;
}
void main()
{
/*
a very simple memory map:
the ordering within texture memory is not significant, and could be
anything
*/
uint32_t framebuffer_start = 0x200000; // intentionally the same address that the boot rom used to draw the SEGA logo
uint32_t isp_tsp_parameter_start = 0x400000;
uint32_t region_array_start = 0x500000;
uint32_t object_list_start = 0x100000;
transfer_region_array(region_array_start,
object_list_start);
transfer_background_polygon(isp_tsp_parameter_start);
//////////////////////////////////////////////////////////////////////////////
// configure the TA
//////////////////////////////////////////////////////////////////////////////
const int tile_y_num = 1;
const int tile_x_num = 1;
using namespace holly;
using holly::holly;
// TA_GLOB_TILE_CLIP restricts which "object pointer blocks" are written
// to.
//
// This can also be used to implement "windowing", as long as the desired
// window size happens to be a multiple of 32 pixels. The "User Tile Clip" TA
// control parameter can also ~equivalently be used as many times as desired
// within a single TA initialization to produce an identical effect.
//
// See DCDBSysArc990907E.pdf page 183.
holly.TA_GLOB_TILE_CLIP = ta_glob_tile_clip::tile_y_num(tile_y_num - 1)
| ta_glob_tile_clip::tile_x_num(tile_x_num - 1);
// While CORE supports arbitrary-length object lists, the TA uses "object
// pointer blocks" as a memory allocation strategy. These fixed-length blocks
// can still have infinite length via "object pointer block links". This
// mechanism is illustrated in DCDBSysArc990907E.pdf page 188.
holly.TA_ALLOC_CTRL = ta_alloc_ctrl::opb_mode::increasing_addresses
| ta_alloc_ctrl::o_opb::_8x4byte;
// While building object lists, the TA contains an internal index (exposed as
// the read-only TA_ITP_CURRENT) for the next address that new ISP/TSP will be
// stored at. The initial value of this index is TA_ISP_BASE.
// reserve space in ISP/TSP parameters for the background parameter
using polygon = holly::core::parameter::isp_tsp_parameter<3>;
uint32_t ta_isp_base_offset = (sizeof (polygon)) * 1;
holly.TA_ISP_BASE = isp_tsp_parameter_start + ta_isp_base_offset;
holly.TA_ISP_LIMIT = isp_tsp_parameter_start + 0x100000;
// Similarly, the TA also contains, for up to 600 tiles, an internal index for
// the next address that an object list entry will be stored for each
// tile. These internal indicies are partially exposed via the read-only
// TA_OL_POINTERS.
holly.TA_OL_BASE = object_list_start;
// TA_OL_LIMIT, DCDBSysArc990907E.pdf page 385:
//
// > Because the TA may automatically store data in the address that is
// > specified by this register, it must not be used for other data. For
// > example, the address specified here must not be the same as the address
// > in the TA_ISP_BASE register.
holly.TA_OL_LIMIT = object_list_start + 0x100000 - 32;
holly.TA_NEXT_OPB_INIT = (object_list_start + 8 * 4 * 2 * 1);
holly.TA_LIST_INIT = ta_list_init::list_init;
// dummy TA_LIST_INIT read; DCDBSysArc990907E.pdf in multiple places says this
// step is required.
(void)holly.TA_LIST_INIT;
//////////////////////////////////////////////////////////////////////////////
// transfer triangles to texture memory via the TA polygon converter FIFO
//////////////////////////////////////////////////////////////////////////////
using systembus::systembus;
using namespace systembus;
transfer_ta_triangle(true);
while ((systembus.ISTNRM & istnrm::end_of_transferring_opaque_list) == 0);
systembus.ISTNRM = istnrm::end_of_transferring_opaque_list;
// transfer again
holly.TA_OL_BASE = object_list_start + 8 * 4;
holly.TA_LIST_CONT = ta_list_cont::list_cont;
(void)holly.TA_LIST_CONT;
transfer_ta_triangle(false);
while ((systembus.ISTNRM & istnrm::end_of_transferring_opaque_list) == 0);
systembus.ISTNRM = istnrm::end_of_transferring_opaque_list;
//////////////////////////////////////////////////////////////////////////////
// configure CORE
//////////////////////////////////////////////////////////////////////////////
holly.SCALER_CTL = scaler_ctl::vertical_scale_factor(0x0800);
//holly.SCALER_CTL = scaler_ctl::vertical_scale_factor(0x0400);
holly.SOFTRESET = 0b11;
holly.SOFTRESET = 0;
While ((spg_status::vsync(holly.SPG_STATUS)));
while (!(spg_status::vsync(holly.SPG_STATUS)));
// REGION_BASE is the (texture memory-relative) address of the region array.
holly.REGION_BASE = region_array_start;
// PARAM_BASE is the (texture memory-relative) address of ISP/TSP parameters.
// Anything that references an ISP/TSP parameter does so relative to this
// address (and not relative to the beginning of texture memory).
holly.PARAM_BASE = isp_tsp_parameter_start;
// Set the offset of the background ISP/TSP parameter, relative to PARAM_BASE
// SKIP is related to the size of each vertex
uint32_t background_offset = 0;
holly.ISP_BACKGND_T = isp_backgnd_t::tag_address(background_offset / 4)
| isp_backgnd_t::tag_offset(0)
| isp_backgnd_t::skip(1);
// FB_W_SOF1 is the (texture memory-relative) address of the framebuffer that
// will be written to when a tile is rendered/flushed.
holly.FB_W_SOF1 = framebuffer_start;
// start the actual render--the rendering process begins by interpreting the
// region array
holly.STARTRENDER = 1;
while ((systembus.ISTNRM & istnrm::end_of_render_tsp) == 0);
systembus.ISTNRM = istnrm::end_of_render_tsp
| istnrm::end_of_render_isp
| istnrm::end_of_render_video;
holly.REGION_BASE = region_array_start + 6 * 4 * 2;
holly.FB_W_SOF1 = framebuffer_start + 640 * 32 * 4 * 2;
holly.STARTRENDER = 1;
holly.FB_R_SOF1 = framebuffer_start;
while ((systembus.ISTNRM & istnrm::end_of_render_tsp) == 0);
systembus.ISTNRM = istnrm::end_of_render_tsp
| istnrm::end_of_render_isp
| istnrm::end_of_render_video;
// return from main; this will effectively jump back to the serial loader
}

View File

@ -21,36 +21,39 @@ namespace holly::core::region_array {
for (int y = 0; y < tile_height; y++) {
for (int x = 0; x < tile_width; x++) {
region_array[ix].tile = tile::y_position(y)
int rix = x * tile_height + y;
//int rix = y * tile_width + x;
region_array[rix].tile = tile::y_position(y)
| tile::x_position(x);
if (y == (tile_height - 1) && x == (tile_width - 1))
region_array[ix].tile |= tile::last_region;
region_array[rix].tile |= tile::last_region;
region_array[ix].list_pointer.opaque = (list_block_size.opaque == 0) ? list_pointer::empty :
region_array[rix].list_pointer.opaque = (list_block_size.opaque == 0) ? list_pointer::empty :
(ol_base + (list_block_size.opaque * ix)
);
region_array[ix].list_pointer.opaque_modifier_volume = (list_block_size.opaque_modifier_volume == 0) ? list_pointer::empty :
region_array[rix].list_pointer.opaque_modifier_volume = (list_block_size.opaque_modifier_volume == 0) ? list_pointer::empty :
(ol_base + num_tiles * ( list_block_size.opaque
)
+ (list_block_size.opaque_modifier_volume * ix)
);
region_array[ix].list_pointer.translucent = (list_block_size.translucent == 0) ? list_pointer::empty :
region_array[rix].list_pointer.translucent = (list_block_size.translucent == 0) ? list_pointer::empty :
(ol_base + num_tiles * ( list_block_size.opaque
+ list_block_size.opaque_modifier_volume
)
+ (list_block_size.translucent * ix)
);
region_array[ix].list_pointer.translucent_modifier_volume = (list_block_size.translucent_modifier_volume == 0) ? list_pointer::empty :
region_array[rix].list_pointer.translucent_modifier_volume = (list_block_size.translucent_modifier_volume == 0) ? list_pointer::empty :
(ol_base + num_tiles * ( list_block_size.opaque
+ list_block_size.opaque_modifier_volume
+ list_block_size.translucent
)
+ (list_block_size.translucent_modifier_volume * ix)
);
region_array[ix].list_pointer.punch_through = (list_block_size.punch_through == 0) ? list_pointer::empty :
region_array[rix].list_pointer.punch_through = (list_block_size.punch_through == 0) ? list_pointer::empty :
(ol_base + num_tiles * ( list_block_size.opaque
+ list_block_size.opaque_modifier_volume
+ list_block_size.translucent