math/geometry: add support for 3-coordinate-space clipping

This commit is contained in:
Zack Buhman 2025-04-26 04:30:00 -05:00
parent 92428711e4
commit 0b41a5138d

View File

@ -4,7 +4,7 @@
namespace geometry {
template <int L, typename T>
template <typename T, int L>
constexpr inline
T line_plane_intersection_d(const vec<L, T>& plane_point, // p0
const vec<L, T>& plane_normal, // n
@ -19,7 +19,7 @@ T line_plane_intersection_d(const vec<L, T>& plane_point, // p0
return intersection;
}
template <int L, typename T>
template <typename T, int L>
constexpr inline
vec<L, T> line_plane_intersection(const vec<L, T>& plane_point, // p0
const vec<L, T>& plane_normal, // n
@ -34,32 +34,19 @@ vec<L, T> line_plane_intersection(const vec<L, T>& plane_point, // p0
return line_start + line_vector * intersection;
}
template <int L, typename T, int M>
template <typename T, int L>
constexpr inline
std::tuple<vec<L, T>, vec<M, T>> line_plane_intersection_two_lines(const vec<L, T>& plane_point, // p0
const vec<L, T>& plane_normal, // n
const vec<L, T>& line_start, // l0
vec<L, T> interpolate(const vec<L, T>& line_start,
const vec<L, T>& line_end,
const vec<M, T>& line2_start,
const vec<M, T>& line2_end
T intersection
)
{
/* it is assumed that line and line2 are the same line, but in different
coordinates spaces. It is therefore possible to re-use the same
interpolation value on either line vector.
*/
const auto line_vector = line_end - line_start; // l
const auto line2_vector = line2_end - line2_start;
const T intersection = line_plane_intersection_d(plane_point, plane_normal, line_start, line_vector); // d
return { line_start + line_vector * intersection
, line2_start + line2_vector * intersection
};
return line_start + line_vector * intersection;
}
template <int L, typename T>
template <typename T, int L>
T clip_boundary(const vec<L, T>& plane_point, // X
const vec<L, T>& plane_normal, // Nc
const vec<L, T>& line_point
@ -74,7 +61,7 @@ inline T positive_modulo(T a, T b)
return (a % b + b) % b;
}
template <int polygon_len, int L, typename T>
template <int polygon_len, typename T, int L>
inline int clip_polygon1(vec<L, T> * output,
const vec<L, T> plane_point,
const vec<L, T> plane_normal,
@ -86,7 +73,7 @@ inline int clip_polygon1(vec<L, T> * output,
const vec<L, T>& s = polygon[ix_s];
const vec<L, T>& f = polygon[ix_f];
bool this_inside = 0.f < clip_boundary<L, T>(plane_point,
bool this_inside = 0.f < clip_boundary<T, L>(plane_point,
plane_normal,
f);
@ -98,7 +85,7 @@ inline int clip_polygon1(vec<L, T> * output,
case 0b01: // I, F
length = 2;
{
const auto i = line_plane_intersection<L, T>(plane_point, plane_normal, s, f);
const auto i = line_plane_intersection<T, L>(plane_point, plane_normal, s, f);
*output++ = i;
*output++ = f;
}
@ -106,7 +93,7 @@ inline int clip_polygon1(vec<L, T> * output,
case 0b10: // I
length = 1;
{
const auto i = line_plane_intersection<L, T>(plane_point, plane_normal, s, f);
const auto i = line_plane_intersection<T, L>(plane_point, plane_normal, s, f);
*output++ = i;
}
break;
@ -119,7 +106,7 @@ inline int clip_polygon1(vec<L, T> * output,
bool end_of_polygon = ix_f == (polygon_len - 1);
if (!end_of_polygon) {
return length +
clip_polygon1<polygon_len, L, T>(output,
clip_polygon1<polygon_len, T, L>(output,
plane_point,
plane_normal,
polygon,
@ -142,11 +129,11 @@ int clip_polygon(vec<L, T> * output,
// It would be nice to remove the extra dot product, but the
// alternative seems likely uglier.
bool this_inside = 0.f < clip_boundary<L, T>(plane_point,
bool this_inside = 0.f < clip_boundary<T, L>(plane_point,
plane_normal,
f);
return clip_polygon1<polygon_len, L, T>(output,
return clip_polygon1<polygon_len, T, L>(output,
plane_point,
plane_normal,
polygon,
@ -155,70 +142,70 @@ int clip_polygon(vec<L, T> * output,
this_inside);
}
template <int polygon_len, int L, typename T, int M>
inline int clip_polygon1_uv(vec<L, T> * output,
vec<M, T> * output_uv,
template <int polygon_len, typename T, int L, int M>
inline int clip_polygon1_2(vec<L, T> * output_1,
vec<M, T> * output_2,
const vec<L, T> plane_point,
const vec<L, T> plane_normal,
const vec<L, T> * polygon,
const vec<M, T> * polygon_uv,
const vec<L, T> * polygon_1,
const vec<M, T> * polygon_2,
const int ix_s,
const int ix_f,
const bool last_inside)
{
const vec<L, T>& s = polygon[ix_s];
const vec<L, T>& f = polygon[ix_f];
const vec<L, T>& s_1 = polygon_1[ix_s];
const vec<L, T>& f_1 = polygon_1[ix_f];
const vec<M, T>& s_uv = polygon_uv[ix_s];
const vec<M, T>& f_uv = polygon_uv[ix_f];
const vec<M, T>& s_2 = polygon_2[ix_s];
const vec<M, T>& f_2 = polygon_2[ix_f];
bool this_inside = 0.f < clip_boundary<L, T>(plane_point,
bool this_inside = 0.f < clip_boundary<T, L>(plane_point,
plane_normal,
f);
f_1);
int length = 0;
switch ((last_inside << 1) | (this_inside << 0)) {
int control = (last_inside << 1) | (this_inside << 0);
switch (control) {
case 0b00: // no output
length = 0;
break;
case 0b01: // I, F
length = 2;
{
auto [i, i_uv] = line_plane_intersection_two_lines<L, T, M>(plane_point, plane_normal,
s, f,
s_uv, f_uv);
*output++ = i;
*output_uv++ = i_uv;
*output++ = f;
*output_uv++ = f_uv;
}
break;
case 0b10: // I
length = 1;
[[fallthrough]];
case 0b01: // I, F
{
auto [i, i_uv] = line_plane_intersection_two_lines<L, T, M>(plane_point, plane_normal,
s, f,
s_uv, f_uv);
*output++ = i;
*output_uv++ = i_uv;
const auto& i_1_start = s_1;
const auto i_1_vector = f_1 - s_1; // l
const T intersection = line_plane_intersection_d<T, L>(plane_point, plane_normal,
i_1_start, i_1_vector);
const vec<L, T> i_1 = i_1_start + i_1_vector * intersection;
*output_1++ = i_1;
*output_2++ = interpolate(s_2, f_2, intersection);
if (control == 0b01) { // I, F
*output_1++ = f_1;
*output_2++ = f_2;
length = 2;
} else {
length = 1;
}
}
break;
case 0b11: // F
*output_1++ = f_1;
*output_2++ = f_2;
length = 1;
*output++ = f;
*output_uv++ = f_uv;
break;
}
bool end_of_polygon = ix_f == (polygon_len - 1);
if (!end_of_polygon) {
return length +
clip_polygon1_uv<polygon_len, L, T, M>(output,
output_uv,
clip_polygon1_2<polygon_len, T, L, M>(output_1,
output_2,
plane_point,
plane_normal,
polygon,
polygon_uv,
polygon_1,
polygon_2,
ix_f,
ix_f + 1,
this_inside);
@ -227,29 +214,144 @@ inline int clip_polygon1_uv(vec<L, T> * output,
}
}
template <int polygon_len, int L, typename T, int M>
int clip_polygon_uv(vec<L, T> * output,
vec<M, T> * output_uv,
template <int polygon_len, typename T, int L, int M>
int clip_polygon_2(vec<L, T> * output_1,
vec<M, T> * output_2,
const vec<L, T>& plane_point,
const vec<L, T>& plane_normal,
const vec<L, T> * polygon,
const vec<M, T> * polygon_uv
const vec<L, T> * polygon_1,
const vec<M, T> * polygon_2
)
{
const vec<L, T> f = polygon[polygon_len - 1];
const vec<L, T> f = polygon_1[polygon_len - 1];
// It would be nice to remove the extra dot product, but the
// alternative seems likely uglier.
bool this_inside = 0.f < clip_boundary<L, T>(plane_point,
bool this_inside = 0.f < clip_boundary<T, L>(plane_point,
plane_normal,
f);
return clip_polygon1_uv<polygon_len, L, T, M>(output,
output_uv,
return clip_polygon1_2<polygon_len, T, L, M>(output_1,
output_2,
plane_point,
plane_normal,
polygon,
polygon_uv,
polygon_1,
polygon_2,
polygon_len - 1, // ix_s
0, // ix_f
this_inside);
}
template <int polygon_len, typename T, int L, int M, int N>
inline int clip_polygon1_3(vec<L, T> * output_1,
vec<M, T> * output_2,
vec<N, T> * output_3,
const vec<L, T> plane_point,
const vec<L, T> plane_normal,
const vec<L, T> * polygon_1,
const vec<M, T> * polygon_2,
const vec<N, T> * polygon_3,
const int ix_s,
const int ix_f,
const bool last_inside)
{
const vec<L, T>& s_1 = polygon_1[ix_s];
const vec<L, T>& f_1 = polygon_1[ix_f];
const vec<M, T>& s_2 = polygon_2[ix_s];
const vec<M, T>& f_2 = polygon_2[ix_f];
const vec<N, T>& s_3 = polygon_3[ix_s];
const vec<N, T>& f_3 = polygon_3[ix_f];
bool this_inside = 0.f < clip_boundary<T, L>(plane_point,
plane_normal,
f_1);
int length = 0;
int control = (last_inside << 1) | (this_inside << 0);
switch (control) {
case 0b00: // no output
length = 0;
break;
case 0b10: // I
[[fallthrough]];
case 0b01: // I, F
{
const auto& i_1_start = s_1;
const auto i_1_vector = f_1 - s_1; // l
const T intersection = line_plane_intersection_d<T, L>(plane_point, plane_normal,
i_1_start, i_1_vector);
const vec<L, T> i_1 = i_1_start + i_1_vector * intersection;
*output_1++ = i_1;
*output_2++ = interpolate(s_2, f_2, intersection);
*output_3++ = interpolate(s_3, f_3, intersection);
if (control == 0b01) { // I, F
*output_1++ = f_1;
*output_2++ = f_2;
*output_3++ = f_3;
length = 2;
} else {
length = 1;
}
}
break;
case 0b11: // F
*output_1++ = f_1;
*output_2++ = f_2;
*output_3++ = f_3;
length = 1;
break;
}
bool end_of_polygon = ix_f == (polygon_len - 1);
if (!end_of_polygon) {
return length +
clip_polygon1_3<polygon_len, T, L, M, N>(output_1,
output_2,
output_3,
plane_point,
plane_normal,
polygon_1,
polygon_2,
polygon_3,
ix_f,
ix_f + 1,
this_inside);
} else {
return length;
}
}
template <int polygon_len, typename T, int L, int M, int N>
int clip_polygon_3(vec<L, T> * output_1,
vec<M, T> * output_2,
vec<N, T> * output_3,
const vec<L, T>& plane_point,
const vec<L, T>& plane_normal,
const vec<L, T> * polygon_1,
const vec<M, T> * polygon_2,
const vec<N, T> * polygon_3
)
{
const vec<L, T> f = polygon_1[polygon_len - 1];
// It would be nice to remove the extra dot product, but the
// alternative seems likely uglier.
bool this_inside = 0.f < clip_boundary<T, L>(plane_point,
plane_normal,
f);
return clip_polygon1_3<polygon_len, T, L, M>(output_1,
output_2,
output_3,
plane_point,
plane_normal,
polygon_1,
polygon_2,
polygon_3,
polygon_len - 1, // ix_s
0, // ix_f
this_inside);