destroyable animated blocks
This commit is contained in:
parent
09ed16029c
commit
8913983ada
Binary file not shown.
@ -2,4 +2,9 @@
|
||||
|
||||
#include "math/float_types.hpp"
|
||||
|
||||
bool aabb_circle_collision(vec3 aabb_position, vec3 circle_position);
|
||||
struct collision_data {
|
||||
vec3 escape_position;
|
||||
vec3 bounds_normal;
|
||||
};
|
||||
|
||||
bool aabb_circle_collision(vec3 aabb_position, vec3 circle_position, vec3 bounds, struct collision_data * data);
|
||||
|
||||
@ -77,53 +77,55 @@ const int block_Cube_triangles[] = {
|
||||
219, 220, 221,
|
||||
222, 223, 224,
|
||||
225, 226, 227,
|
||||
228, 229, 230,
|
||||
231, 232, 233,
|
||||
234, 235, 236,
|
||||
237, 238, 239,
|
||||
240, 241, 242,
|
||||
243, 244, 245,
|
||||
246, 247, 248,
|
||||
249, 250, 251,
|
||||
252, 253, 254,
|
||||
255, 256, 257,
|
||||
258, 259, 260,
|
||||
261, 262, 263,
|
||||
264, 265, 266,
|
||||
267, 268, 269,
|
||||
270, 271, 272,
|
||||
273, 274, 275,
|
||||
276, 277, 278,
|
||||
279, 280, 281,
|
||||
282, 283, 284,
|
||||
285, 286, 287,
|
||||
288, 289, 290,
|
||||
291, 292, 293,
|
||||
294, 295, 296,
|
||||
297, 298, 299,
|
||||
300, 301, 302,
|
||||
303, 304, 305,
|
||||
306, 307, 308,
|
||||
309, 310, 311,
|
||||
312, 313, 314,
|
||||
315, 316, 317,
|
||||
2, 318, 319,
|
||||
319, 320, 321,
|
||||
321, 322, 323,
|
||||
323, 324, 0,
|
||||
0, 325, 326,
|
||||
326, 327, 1,
|
||||
1, 328, 329,
|
||||
329, 330, 2,
|
||||
2, 319, 321,
|
||||
321, 323, 0,
|
||||
0, 326, 1,
|
||||
1, 329, 2,
|
||||
2, 321, 0,
|
||||
331, 332, 333,
|
||||
9, 228, 10,
|
||||
229, 230, 231,
|
||||
232, 233, 234,
|
||||
235, 236, 237,
|
||||
238, 239, 240,
|
||||
241, 242, 243,
|
||||
244, 245, 246,
|
||||
247, 248, 249,
|
||||
250, 251, 252,
|
||||
253, 254, 255,
|
||||
256, 257, 258,
|
||||
259, 260, 261,
|
||||
262, 263, 264,
|
||||
265, 266, 267,
|
||||
268, 269, 270,
|
||||
271, 272, 273,
|
||||
274, 275, 276,
|
||||
277, 278, 279,
|
||||
280, 281, 282,
|
||||
283, 284, 285,
|
||||
286, 287, 288,
|
||||
289, 290, 291,
|
||||
292, 293, 294,
|
||||
295, 296, 297,
|
||||
298, 299, 300,
|
||||
96, 301, 97,
|
||||
99, 302, 100,
|
||||
102, 303, 103,
|
||||
105, 304, 106,
|
||||
108, 305, 109,
|
||||
111, 306, 112,
|
||||
114, 307, 115,
|
||||
117, 308, 118,
|
||||
120, 309, 121,
|
||||
123, 310, 124,
|
||||
126, 311, 127,
|
||||
129, 312, 130,
|
||||
313, 314, 315,
|
||||
316, 317, 318,
|
||||
138, 319, 139,
|
||||
320, 321, 322,
|
||||
323, 324, 325,
|
||||
326, 327, 328,
|
||||
329, 330, 331,
|
||||
153, 332, 154,
|
||||
156, 333, 157,
|
||||
334, 335, 336,
|
||||
337, 338, 339,
|
||||
12, 340, 13,
|
||||
162, 337, 163,
|
||||
338, 339, 340,
|
||||
341, 342, 343,
|
||||
344, 345, 346,
|
||||
347, 348, 349,
|
||||
@ -136,99 +138,16 @@ const int block_Cube_triangles[] = {
|
||||
368, 369, 370,
|
||||
371, 372, 373,
|
||||
374, 375, 376,
|
||||
377, 378, 379,
|
||||
380, 381, 382,
|
||||
383, 384, 385,
|
||||
386, 387, 388,
|
||||
389, 390, 391,
|
||||
392, 393, 394,
|
||||
395, 396, 397,
|
||||
398, 399, 400,
|
||||
401, 402, 403,
|
||||
404, 405, 406,
|
||||
407, 408, 409,
|
||||
410, 411, 412,
|
||||
99, 413, 100,
|
||||
102, 414, 103,
|
||||
105, 415, 106,
|
||||
108, 416, 109,
|
||||
111, 417, 112,
|
||||
114, 418, 115,
|
||||
117, 419, 118,
|
||||
120, 420, 121,
|
||||
123, 421, 124,
|
||||
126, 422, 127,
|
||||
129, 423, 130,
|
||||
132, 424, 133,
|
||||
425, 426, 427,
|
||||
428, 429, 430,
|
||||
141, 431, 142,
|
||||
432, 433, 434,
|
||||
435, 436, 437,
|
||||
438, 439, 440,
|
||||
441, 442, 443,
|
||||
156, 444, 157,
|
||||
159, 445, 160,
|
||||
446, 447, 448,
|
||||
165, 449, 166,
|
||||
450, 451, 452,
|
||||
453, 454, 455,
|
||||
456, 457, 458,
|
||||
459, 460, 461,
|
||||
462, 463, 464,
|
||||
465, 466, 467,
|
||||
468, 469, 470,
|
||||
471, 472, 473,
|
||||
474, 475, 476,
|
||||
477, 478, 479,
|
||||
480, 481, 482,
|
||||
483, 484, 485,
|
||||
486, 487, 488,
|
||||
489, 490, 491,
|
||||
492, 493, 494,
|
||||
495, 496, 497,
|
||||
498, 499, 500,
|
||||
501, 502, 503,
|
||||
504, 505, 506,
|
||||
507, 508, 509,
|
||||
510, 511, 512,
|
||||
513, 514, 515,
|
||||
516, 517, 518,
|
||||
519, 520, 521,
|
||||
522, 523, 524,
|
||||
525, 526, 527,
|
||||
528, 529, 530,
|
||||
531, 532, 533,
|
||||
534, 535, 536,
|
||||
537, 538, 539,
|
||||
540, 541, 542,
|
||||
543, 544, 545,
|
||||
546, 547, 548,
|
||||
549, 550, 551,
|
||||
552, 553, 554,
|
||||
555, 556, 557,
|
||||
558, 559, 560,
|
||||
279, 561, 280,
|
||||
282, 562, 283,
|
||||
285, 563, 286,
|
||||
288, 564, 289,
|
||||
291, 565, 292,
|
||||
294, 566, 295,
|
||||
297, 567, 298,
|
||||
300, 568, 301,
|
||||
303, 569, 304,
|
||||
306, 570, 307,
|
||||
309, 571, 310,
|
||||
312, 572, 313,
|
||||
573, 574, 575,
|
||||
204, 377, 205,
|
||||
207, 378, 208,
|
||||
210, 379, 211,
|
||||
213, 380, 214,
|
||||
381, 382, 383,
|
||||
};
|
||||
|
||||
const int block_Cube_triangles_length = (sizeof (block_Cube_triangles)) / (sizeof (block_Cube_triangles[0]));
|
||||
|
||||
const float block_vertices[] = {
|
||||
-1.775316f, 0.000000f, -0.857357f, 0.044995f, 0.962648f, -0.0000f, -1.0000f, -0.0000f,
|
||||
1.804443f, 0.000000f, -0.828995f, 0.962429f, 0.947171f, -0.0000f, -1.0000f, -0.0000f,
|
||||
1.775316f, 0.000000f, 0.857357f, 0.955005f, 0.037352f, -0.0000f, -1.0000f, -0.0000f,
|
||||
1.418335f, 0.454219f, -0.412896f, 1.000000f, 0.967273f, 0.5143f, 0.8250f, -0.2343f,
|
||||
1.896293f, 0.050904f, -0.783980f, 1.000000f, 0.947586f, 0.5143f, 0.8250f, -0.2343f,
|
||||
1.876107f, 0.050306f, -0.830395f, 0.998435f, 0.975457f, 0.5143f, 0.8250f, -0.2343f,
|
||||
@ -397,166 +316,57 @@ const float block_vertices[] = {
|
||||
1.357419f, 0.458580f, -0.441779f, 0.977775f, 1.000000f, 0.2883f, 0.8265f, -0.4835f,
|
||||
1.876107f, 0.050306f, -0.830395f, 0.998435f, 0.975457f, 0.2883f, 0.8265f, -0.4835f,
|
||||
1.820297f, 0.049848f, -0.864452f, 0.980804f, 0.998032f, 0.2883f, 0.8265f, -0.4835f,
|
||||
-1.804443f, 0.000000f, 0.828995f, 0.037571f, 0.052829f, -0.1034f, -0.9937f, 0.0439f,
|
||||
-1.856144f, 0.006740f, 0.859850f, 0.023691f, 0.035704f, -0.1034f, -0.9937f, 0.0439f,
|
||||
-1.871401f, 0.006820f, 0.825706f, 0.020471f, 0.054779f, -0.1034f, -0.9937f, 0.0439f,
|
||||
-1.871401f, 0.006820f, 0.825706f, 0.020471f, 0.054779f, -0.5581f, -0.7940f, 0.2410f,
|
||||
-1.886035f, 0.025153f, 0.852220f, 0.002578f, 0.022467f, -0.5581f, -0.7940f, 0.2410f,
|
||||
-1.905020f, 0.025452f, 0.809229f, 0.000085f, 0.048821f, -0.5581f, -0.7940f, 0.2410f,
|
||||
-1.905020f, 0.025452f, 0.809229f, 0.000085f, 0.048821f, -0.7426f, 0.5825f, 0.3305f,
|
||||
-1.876107f, 0.050306f, 0.830395f, 0.001565f, 0.024543f, -0.7426f, 0.5825f, 0.3305f,
|
||||
-1.896293f, 0.050904f, 0.783980f, 0.000000f, 0.052414f, -0.7426f, 0.5825f, 0.3305f,
|
||||
-1.794445f, -0.000000f, 0.851240f, 0.040011f, 0.040618f, -0.0877f, -0.9858f, 0.1431f,
|
||||
-1.824526f, 0.006678f, 0.878805f, 0.032047f, 0.025150f, -0.0877f, -0.9858f, 0.1431f,
|
||||
-1.856144f, 0.006740f, 0.859850f, 0.023691f, 0.035704f, -0.0877f, -0.9858f, 0.1431f,
|
||||
-1.856144f, 0.006740f, 0.859850f, 0.023691f, 0.035704f, -0.4662f, -0.4384f, 0.7684f,
|
||||
-1.836557f, 0.024924f, 0.882110f, 0.019436f, 0.002175f, -0.4662f, -0.4384f, 0.7684f,
|
||||
-1.886035f, 0.025153f, 0.852220f, 0.002578f, 0.022467f, -0.4662f, -0.4384f, 0.7684f,
|
||||
-1.886035f, 0.025153f, 0.852220f, 0.002578f, 0.022467f, -0.3741f, 0.6876f, 0.6223f,
|
||||
-1.820297f, 0.049848f, 0.864452f, 0.019196f, 0.001968f, -0.3741f, 0.6876f, 0.6223f,
|
||||
-1.876107f, 0.050306f, 0.830395f, 0.001565f, 0.024543f, -0.3741f, 0.6876f, 0.6223f,
|
||||
-1.787430f, -0.000000f, 0.855422f, 0.041831f, 0.038350f, -0.0359f, -0.9745f, 0.2214f,
|
||||
-1.780008f, 0.006663f, 0.885957f, 0.043890f, 0.021812f, -0.0359f, -0.9745f, 0.2214f,
|
||||
-1.824526f, 0.006678f, 0.878805f, 0.032047f, 0.025150f, -0.0359f, -0.9745f, 0.2214f,
|
||||
-1.780008f, 0.006663f, 0.885957f, 0.043890f, 0.021812f, -0.1527f, -0.2728f, 0.9499f,
|
||||
-1.836557f, 0.024924f, 0.882110f, 0.019436f, 0.002175f, -0.1527f, -0.2728f, 0.9499f,
|
||||
-1.824526f, 0.006678f, 0.878805f, 0.032047f, 0.025150f, -0.1527f, -0.2728f, 0.9499f,
|
||||
-1.768401f, 0.024866f, 0.893148f, 0.039098f, 0.000065f, -0.1241f, 0.6263f, 0.7697f,
|
||||
-1.820297f, 0.049848f, 0.864452f, 0.019196f, 0.001968f, -0.1241f, 0.6263f, 0.7697f,
|
||||
-1.836557f, 0.024924f, 0.882110f, 0.019436f, 0.002175f, -0.1241f, 0.6263f, 0.7697f,
|
||||
1.787430f, 0.000000f, 0.855422f, 0.958169f, 0.038350f, 0.0353f, -0.9746f, 0.2213f,
|
||||
1.780008f, 0.006663f, 0.885957f, 0.956110f, 0.021812f, 0.0353f, -0.9746f, 0.2213f,
|
||||
1.775316f, 0.000000f, 0.857357f, 0.955005f, 0.037352f, 0.0353f, -0.9746f, 0.2213f,
|
||||
1.780008f, 0.006663f, 0.885957f, 0.956110f, 0.021812f, 0.1539f, -0.2766f, 0.9486f,
|
||||
1.836557f, 0.024924f, 0.882110f, 0.980564f, 0.002175f, 0.1539f, -0.2766f, 0.9486f,
|
||||
1.768401f, 0.024866f, 0.893148f, 0.960902f, 0.000065f, 0.1539f, -0.2766f, 0.9486f,
|
||||
1.768401f, 0.024866f, 0.893148f, 0.960902f, 0.000065f, 0.1252f, 0.6250f, 0.7705f,
|
||||
1.820297f, 0.049848f, 0.864452f, 0.980804f, 0.001968f, 0.1252f, 0.6250f, 0.7705f,
|
||||
1.743604f, 0.049732f, 0.877005f, 0.959534f, 0.000000f, 0.1252f, 0.6250f, 0.7705f,
|
||||
1.794445f, 0.000000f, 0.851240f, 0.959989f, 0.040618f, 0.0863f, -0.9857f, 0.1447f,
|
||||
1.824526f, 0.006678f, 0.878805f, 0.967953f, 0.025150f, 0.0863f, -0.9857f, 0.1447f,
|
||||
1.787430f, 0.000000f, 0.855422f, 0.958169f, 0.038350f, 0.0863f, -0.9857f, 0.1447f,
|
||||
1.856144f, 0.006740f, 0.859850f, 0.976309f, 0.035704f, 0.4615f, -0.4435f, 0.7684f,
|
||||
1.836557f, 0.024924f, 0.882110f, 0.980564f, 0.002175f, 0.4615f, -0.4435f, 0.7684f,
|
||||
1.824526f, 0.006678f, 0.878805f, 0.967953f, 0.025150f, 0.4615f, -0.4435f, 0.7684f,
|
||||
1.886035f, 0.025153f, 0.852220f, 0.997422f, 0.022467f, 0.3739f, 0.6861f, 0.6241f,
|
||||
1.820297f, 0.049848f, 0.864452f, 0.980804f, 0.001968f, 0.3739f, 0.6861f, 0.6241f,
|
||||
1.836557f, 0.024924f, 0.882110f, 0.980564f, 0.002175f, 0.3739f, 0.6861f, 0.6241f,
|
||||
1.804443f, -0.000000f, 0.828995f, 0.962429f, 0.052829f, 0.1021f, -0.9937f, 0.0459f,
|
||||
1.856144f, 0.006740f, 0.859850f, 0.976309f, 0.035704f, 0.1021f, -0.9937f, 0.0459f,
|
||||
1.794445f, 0.000000f, 0.851240f, 0.959989f, 0.040618f, 0.1021f, -0.9937f, 0.0459f,
|
||||
1.871401f, 0.006820f, 0.825706f, 0.979529f, 0.054779f, 0.5531f, -0.7962f, 0.2453f,
|
||||
1.886035f, 0.025153f, 0.852220f, 0.997422f, 0.022467f, 0.5531f, -0.7962f, 0.2453f,
|
||||
1.856144f, 0.006740f, 0.859850f, 0.976309f, 0.035704f, 0.5531f, -0.7962f, 0.2453f,
|
||||
1.905020f, 0.025452f, 0.809229f, 0.999915f, 0.048821f, 0.7428f, 0.5813f, 0.3321f,
|
||||
1.876107f, 0.050306f, 0.830395f, 0.998435f, 0.024543f, 0.7428f, 0.5813f, 0.3321f,
|
||||
1.886035f, 0.025153f, 0.852220f, 0.997422f, 0.022467f, 0.7428f, 0.5813f, 0.3321f,
|
||||
-1.787430f, 0.000000f, -0.855422f, 0.041831f, 0.961650f, -0.0353f, -0.9746f, -0.2213f,
|
||||
-1.780008f, 0.006663f, -0.885957f, 0.043890f, 0.978188f, -0.0353f, -0.9746f, -0.2213f,
|
||||
-1.775316f, 0.000000f, -0.857357f, 0.044995f, 0.962648f, -0.0353f, -0.9746f, -0.2213f,
|
||||
-1.780008f, 0.006663f, -0.885957f, 0.043890f, 0.978188f, -0.1539f, -0.2766f, -0.9486f,
|
||||
-1.836557f, 0.024924f, -0.882110f, 0.019436f, 0.997825f, -0.1539f, -0.2766f, -0.9486f,
|
||||
-1.768401f, 0.024866f, -0.893148f, 0.039098f, 0.999935f, -0.1539f, -0.2766f, -0.9486f,
|
||||
-1.768401f, 0.024866f, -0.893148f, 0.039098f, 0.999935f, -0.1252f, 0.6250f, -0.7705f,
|
||||
-1.820297f, 0.049848f, -0.864452f, 0.019196f, 0.998032f, -0.1252f, 0.6250f, -0.7705f,
|
||||
-1.743604f, 0.049732f, -0.877005f, 0.040466f, 1.000000f, -0.1252f, 0.6250f, -0.7705f,
|
||||
-1.794445f, 0.000000f, -0.851240f, 0.040011f, 0.959383f, -0.0863f, -0.9857f, -0.1447f,
|
||||
-1.824526f, 0.006678f, -0.878805f, 0.032047f, 0.974849f, -0.0863f, -0.9857f, -0.1447f,
|
||||
-1.787430f, 0.000000f, -0.855422f, 0.041831f, 0.961650f, -0.0863f, -0.9857f, -0.1447f,
|
||||
-1.856144f, 0.006740f, -0.859850f, 0.023691f, 0.964296f, -0.4615f, -0.4435f, -0.7684f,
|
||||
-1.836557f, 0.024924f, -0.882110f, 0.019436f, 0.997825f, -0.4615f, -0.4435f, -0.7684f,
|
||||
-1.824526f, 0.006678f, -0.878805f, 0.032047f, 0.974849f, -0.4615f, -0.4435f, -0.7684f,
|
||||
-1.886035f, 0.025153f, -0.852220f, 0.002578f, 0.977533f, -0.3739f, 0.6861f, -0.6241f,
|
||||
-1.820297f, 0.049848f, -0.864452f, 0.019196f, 0.998032f, -0.3739f, 0.6861f, -0.6241f,
|
||||
-1.836557f, 0.024924f, -0.882110f, 0.019436f, 0.997825f, -0.3739f, 0.6861f, -0.6241f,
|
||||
-1.804443f, -0.000000f, -0.828995f, 0.037571f, 0.947172f, -0.1021f, -0.9937f, -0.0459f,
|
||||
-1.856144f, 0.006740f, -0.859850f, 0.023691f, 0.964296f, -0.1021f, -0.9937f, -0.0459f,
|
||||
-1.794445f, 0.000000f, -0.851240f, 0.040011f, 0.959383f, -0.1021f, -0.9937f, -0.0459f,
|
||||
-1.871401f, 0.006820f, -0.825706f, 0.020471f, 0.945221f, -0.5531f, -0.7962f, -0.2453f,
|
||||
-1.886035f, 0.025153f, -0.852220f, 0.002578f, 0.977533f, -0.5531f, -0.7962f, -0.2453f,
|
||||
-1.856144f, 0.006740f, -0.859850f, 0.023691f, 0.964296f, -0.5531f, -0.7962f, -0.2453f,
|
||||
-1.905020f, 0.025452f, -0.809229f, 0.000085f, 0.951179f, -0.7428f, 0.5813f, -0.3321f,
|
||||
-1.876107f, 0.050306f, -0.830395f, 0.001565f, 0.975457f, -0.7428f, 0.5813f, -0.3321f,
|
||||
-1.886035f, 0.025153f, -0.852220f, 0.002578f, 0.977533f, -0.7428f, 0.5813f, -0.3321f,
|
||||
1.787430f, -0.000000f, -0.855422f, 0.958169f, 0.961650f, 0.0359f, -0.9745f, -0.2214f,
|
||||
1.780008f, 0.006663f, -0.885957f, 0.956110f, 0.978188f, 0.0359f, -0.9745f, -0.2214f,
|
||||
1.824526f, 0.006678f, -0.878805f, 0.967953f, 0.974850f, 0.0359f, -0.9745f, -0.2214f,
|
||||
1.780008f, 0.006663f, -0.885957f, 0.956110f, 0.978188f, 0.1527f, -0.2728f, -0.9499f,
|
||||
1.836557f, 0.024924f, -0.882110f, 0.980564f, 0.997825f, 0.1527f, -0.2728f, -0.9499f,
|
||||
1.824526f, 0.006678f, -0.878805f, 0.967953f, 0.974850f, 0.1527f, -0.2728f, -0.9499f,
|
||||
1.768401f, 0.024866f, -0.893148f, 0.960902f, 0.999935f, 0.1241f, 0.6263f, -0.7697f,
|
||||
1.820297f, 0.049848f, -0.864452f, 0.980804f, 0.998032f, 0.1241f, 0.6263f, -0.7697f,
|
||||
1.836557f, 0.024924f, -0.882110f, 0.980564f, 0.997825f, 0.1241f, 0.6263f, -0.7697f,
|
||||
1.794445f, -0.000000f, -0.851240f, 0.959989f, 0.959382f, 0.0877f, -0.9858f, -0.1431f,
|
||||
1.824526f, 0.006678f, -0.878805f, 0.967953f, 0.974850f, 0.0877f, -0.9858f, -0.1431f,
|
||||
1.856144f, 0.006740f, -0.859850f, 0.976309f, 0.964296f, 0.0877f, -0.9858f, -0.1431f,
|
||||
1.856144f, 0.006740f, -0.859850f, 0.976309f, 0.964296f, 0.4662f, -0.4384f, -0.7684f,
|
||||
1.836557f, 0.024924f, -0.882110f, 0.980564f, 0.997825f, 0.4662f, -0.4384f, -0.7684f,
|
||||
1.886035f, 0.025153f, -0.852220f, 0.997422f, 0.977533f, 0.4662f, -0.4384f, -0.7684f,
|
||||
1.886035f, 0.025153f, -0.852220f, 0.997422f, 0.977533f, 0.3741f, 0.6876f, -0.6223f,
|
||||
1.820297f, 0.049848f, -0.864452f, 0.980804f, 0.998032f, 0.3741f, 0.6876f, -0.6223f,
|
||||
1.876107f, 0.050306f, -0.830395f, 0.998435f, 0.975457f, 0.3741f, 0.6876f, -0.6223f,
|
||||
1.804443f, 0.000000f, -0.828995f, 0.962429f, 0.947171f, 0.1034f, -0.9937f, -0.0439f,
|
||||
1.856144f, 0.006740f, -0.859850f, 0.976309f, 0.964296f, 0.1034f, -0.9937f, -0.0439f,
|
||||
1.871401f, 0.006820f, -0.825706f, 0.979529f, 0.945221f, 0.1034f, -0.9937f, -0.0439f,
|
||||
1.871401f, 0.006820f, -0.825706f, 0.979529f, 0.945221f, 0.5581f, -0.7940f, -0.2410f,
|
||||
1.886035f, 0.025153f, -0.852220f, 0.997422f, 0.977533f, 0.5581f, -0.7940f, -0.2410f,
|
||||
1.905020f, 0.025452f, -0.809229f, 0.999915f, 0.951179f, 0.5581f, -0.7940f, -0.2410f,
|
||||
1.905020f, 0.025452f, -0.809229f, 0.999915f, 0.951179f, 0.7426f, 0.5825f, -0.3305f,
|
||||
1.876107f, 0.050306f, -0.830395f, 0.998435f, 0.975457f, 0.7426f, 0.5825f, -0.3305f,
|
||||
1.896293f, 0.050904f, -0.783980f, 1.000000f, 0.947586f, 0.7426f, 0.5825f, -0.3305f,
|
||||
1.804443f, 0.000000f, -0.828995f, 0.962429f, 0.947171f, 0.1013f, -0.9949f, -0.0000f,
|
||||
1.871401f, 0.006820f, 0.825706f, 0.979529f, 0.054779f, 0.1013f, -0.9949f, -0.0000f,
|
||||
1.804443f, -0.000000f, 0.828995f, 0.962429f, 0.052829f, 0.1013f, -0.9949f, -0.0000f,
|
||||
1.871401f, 0.006820f, -0.825706f, 0.979529f, 0.945221f, 0.4847f, -0.8747f, -0.0000f,
|
||||
1.905020f, 0.025452f, 0.809229f, 0.999915f, 0.048821f, 0.4847f, -0.8747f, -0.0000f,
|
||||
1.871401f, 0.006820f, 0.825706f, 0.979529f, 0.054779f, 0.4847f, -0.8747f, -0.0000f,
|
||||
1.905020f, 0.025452f, -0.809229f, 0.999915f, 0.951179f, 0.9459f, 0.3244f, -0.0000f,
|
||||
1.896293f, 0.050904f, 0.783980f, 1.000000f, 0.052414f, 0.9459f, 0.3244f, -0.0000f,
|
||||
1.905020f, 0.025452f, 0.809229f, 0.999915f, 0.048821f, 0.9459f, 0.3244f, -0.0000f,
|
||||
-1.775316f, 0.000000f, -0.857357f, 0.044995f, 0.962648f, -0.0000f, -0.9739f, -0.2269f,
|
||||
1.780008f, 0.006663f, -0.885957f, 0.956110f, 0.978188f, -0.0000f, -0.9739f, -0.2269f,
|
||||
1.775316f, -0.000000f, -0.857357f, 0.955005f, 0.962648f, -0.0000f, -0.9739f, -0.2269f,
|
||||
-1.780008f, 0.006663f, -0.885957f, 0.043890f, 0.978188f, -0.0000f, -0.3674f, -0.9300f,
|
||||
1.768401f, 0.024866f, -0.893148f, 0.960902f, 0.999935f, -0.0000f, -0.3674f, -0.9300f,
|
||||
1.780008f, 0.006663f, -0.885957f, 0.956110f, 0.978188f, -0.0000f, -0.3674f, -0.9300f,
|
||||
-1.768401f, 0.024866f, -0.893148f, 0.039098f, 0.999935f, -0.0000f, 0.5445f, -0.8387f,
|
||||
1.743604f, 0.049732f, -0.877005f, 0.959534f, 1.000000f, -0.0000f, 0.5445f, -0.8387f,
|
||||
1.768401f, 0.024866f, -0.893148f, 0.960902f, 0.999935f, -0.0000f, 0.5445f, -0.8387f,
|
||||
-1.804443f, 0.000000f, 0.828995f, 0.037571f, 0.052829f, -0.1013f, -0.9949f, -0.0000f,
|
||||
-1.871401f, 0.006820f, -0.825706f, 0.020471f, 0.945221f, -0.1013f, -0.9949f, -0.0000f,
|
||||
-1.804443f, -0.000000f, -0.828995f, 0.037571f, 0.947172f, -0.1013f, -0.9949f, -0.0000f,
|
||||
-1.871401f, 0.006820f, 0.825706f, 0.020471f, 0.054779f, -0.4847f, -0.8747f, -0.0000f,
|
||||
-1.905020f, 0.025452f, -0.809229f, 0.000085f, 0.951179f, -0.4847f, -0.8747f, -0.0000f,
|
||||
-1.871401f, 0.006820f, -0.825706f, 0.020471f, 0.945221f, -0.4847f, -0.8747f, -0.0000f,
|
||||
-1.905020f, 0.025452f, 0.809229f, 0.000085f, 0.048821f, -0.9459f, 0.3244f, -0.0000f,
|
||||
-1.896293f, 0.050904f, -0.783980f, 0.000000f, 0.947586f, -0.9459f, 0.3244f, -0.0000f,
|
||||
-1.905020f, 0.025452f, -0.809229f, 0.000085f, 0.951179f, -0.9459f, 0.3244f, -0.0000f,
|
||||
1.775316f, 0.000000f, 0.857357f, 0.955005f, 0.037352f, -0.0000f, -0.9739f, 0.2269f,
|
||||
-1.780008f, 0.006663f, 0.885957f, 0.043890f, 0.021812f, -0.0000f, -0.9739f, 0.2269f,
|
||||
-1.775316f, -0.000000f, 0.857357f, 0.044995f, 0.037352f, -0.0000f, -0.9739f, 0.2269f,
|
||||
1.780008f, 0.006663f, 0.885957f, 0.956110f, 0.021812f, -0.0000f, -0.3674f, 0.9300f,
|
||||
-1.768401f, 0.024866f, 0.893148f, 0.039098f, 0.000065f, -0.0000f, -0.3674f, 0.9300f,
|
||||
-1.780008f, 0.006663f, 0.885957f, 0.043890f, 0.021812f, -0.0000f, -0.3674f, 0.9300f,
|
||||
1.768401f, 0.024866f, 0.893148f, 0.960902f, 0.000065f, -0.0000f, 0.5445f, 0.8387f,
|
||||
-1.743604f, 0.049732f, 0.877005f, 0.040466f, 0.000000f, -0.0000f, 0.5445f, 0.8387f,
|
||||
-1.768401f, 0.024866f, 0.893148f, 0.039098f, 0.000065f, -0.0000f, 0.5445f, 0.8387f,
|
||||
1.288476f, 0.452916f, -0.461143f, 0.951006f, 1.000000f, 0.1024f, 0.7678f, -0.6324f,
|
||||
1.820297f, 0.049848f, -0.864452f, 0.980804f, 0.998032f, 0.1024f, 0.7678f, -0.6324f,
|
||||
1.743604f, 0.049732f, -0.877005f, 0.959534f, 1.000000f, 0.1024f, 0.7678f, -0.6324f,
|
||||
-1.775316f, -0.000000f, 0.857357f, 0.044995f, 0.037352f, -0.0000f, -1.0000f, -0.0000f,
|
||||
-1.787430f, -0.000000f, 0.855422f, 0.041831f, 0.038350f, -0.0000f, -1.0000f, -0.0000f,
|
||||
-1.794445f, -0.000000f, 0.851240f, 0.040011f, 0.040618f, -0.0000f, -1.0000f, -0.0000f,
|
||||
-1.804443f, 0.000000f, 0.828995f, 0.037571f, 0.052829f, -0.0000f, -1.0000f, -0.0000f,
|
||||
-1.804443f, -0.000000f, -0.828995f, 0.037571f, 0.947172f, -0.0000f, -1.0000f, -0.0000f,
|
||||
-1.794445f, 0.000000f, -0.851240f, 0.040011f, 0.959383f, -0.0000f, -1.0000f, -0.0000f,
|
||||
-1.787430f, 0.000000f, -0.855422f, 0.041831f, 0.961650f, -0.0000f, -1.0000f, -0.0000f,
|
||||
1.775316f, -0.000000f, -0.857357f, 0.955005f, 0.962648f, -0.0000f, -1.0000f, -0.0000f,
|
||||
1.787430f, -0.000000f, -0.855422f, 0.958169f, 0.961650f, -0.0000f, -1.0000f, -0.0000f,
|
||||
1.794445f, -0.000000f, -0.851240f, 0.959989f, 0.959382f, -0.0000f, -1.0000f, -0.0000f,
|
||||
1.804443f, -0.000000f, 0.828995f, 0.962429f, 0.052829f, -0.0000f, -1.0000f, -0.0000f,
|
||||
1.794445f, 0.000000f, 0.851240f, 0.959989f, 0.040618f, -0.0000f, -1.0000f, -0.0000f,
|
||||
1.787430f, 0.000000f, 0.855422f, 0.958169f, 0.038350f, -0.0000f, -1.0000f, -0.0000f,
|
||||
1.418335f, 0.454219f, -0.412896f, 1.000000f, 0.967273f, 0.5015f, 0.8273f, -0.2532f,
|
||||
1.456025f, 0.440923f, -0.381697f, 1.000000f, 0.924907f, 0.5015f, 0.8273f, -0.2532f,
|
||||
1.896293f, 0.050904f, -0.783980f, 1.000000f, 0.947586f, 0.5015f, 0.8273f, -0.2532f,
|
||||
@ -679,125 +489,45 @@ const float block_vertices[] = {
|
||||
1.357419f, 0.458580f, -0.441779f, 0.977775f, 1.000000f, 0.2884f, 0.8265f, -0.4834f,
|
||||
1.418335f, 0.454219f, -0.412896f, 1.000000f, 0.967273f, 0.2884f, 0.8265f, -0.4834f,
|
||||
1.876107f, 0.050306f, -0.830395f, 0.998435f, 0.975457f, 0.2884f, 0.8265f, -0.4834f,
|
||||
-1.804443f, 0.000000f, 0.828995f, 0.037571f, 0.052829f, -0.1021f, -0.9937f, 0.0459f,
|
||||
-1.794445f, -0.000000f, 0.851240f, 0.040011f, 0.040618f, -0.1021f, -0.9937f, 0.0459f,
|
||||
-1.856144f, 0.006740f, 0.859850f, 0.023691f, 0.035704f, -0.1021f, -0.9937f, 0.0459f,
|
||||
-1.871401f, 0.006820f, 0.825706f, 0.020471f, 0.054779f, -0.5531f, -0.7962f, 0.2453f,
|
||||
-1.856144f, 0.006740f, 0.859850f, 0.023691f, 0.035704f, -0.5531f, -0.7962f, 0.2453f,
|
||||
-1.886035f, 0.025153f, 0.852220f, 0.002578f, 0.022467f, -0.5531f, -0.7962f, 0.2453f,
|
||||
-1.905020f, 0.025452f, 0.809229f, 0.000085f, 0.048821f, -0.7428f, 0.5813f, 0.3321f,
|
||||
-1.886035f, 0.025153f, 0.852220f, 0.002578f, 0.022467f, -0.7428f, 0.5813f, 0.3321f,
|
||||
-1.876107f, 0.050306f, 0.830395f, 0.001565f, 0.024543f, -0.7428f, 0.5813f, 0.3321f,
|
||||
-1.794445f, -0.000000f, 0.851240f, 0.040011f, 0.040618f, -0.0863f, -0.9857f, 0.1447f,
|
||||
-1.787430f, -0.000000f, 0.855422f, 0.041831f, 0.038350f, -0.0863f, -0.9857f, 0.1447f,
|
||||
-1.824526f, 0.006678f, 0.878805f, 0.032047f, 0.025150f, -0.0863f, -0.9857f, 0.1447f,
|
||||
-1.856144f, 0.006740f, 0.859850f, 0.023691f, 0.035704f, -0.4615f, -0.4435f, 0.7684f,
|
||||
-1.824526f, 0.006678f, 0.878805f, 0.032047f, 0.025150f, -0.4615f, -0.4435f, 0.7684f,
|
||||
-1.836557f, 0.024924f, 0.882110f, 0.019436f, 0.002175f, -0.4615f, -0.4435f, 0.7684f,
|
||||
-1.886035f, 0.025153f, 0.852220f, 0.002578f, 0.022467f, -0.3739f, 0.6861f, 0.6241f,
|
||||
-1.836557f, 0.024924f, 0.882110f, 0.019436f, 0.002175f, -0.3739f, 0.6861f, 0.6241f,
|
||||
-1.820297f, 0.049848f, 0.864452f, 0.019196f, 0.001968f, -0.3739f, 0.6861f, 0.6241f,
|
||||
-1.787430f, -0.000000f, 0.855422f, 0.041831f, 0.038350f, -0.0353f, -0.9746f, 0.2212f,
|
||||
-1.775316f, -0.000000f, 0.857357f, 0.044995f, 0.037352f, -0.0353f, -0.9746f, 0.2212f,
|
||||
-1.780008f, 0.006663f, 0.885957f, 0.043890f, 0.021812f, -0.0353f, -0.9746f, 0.2212f,
|
||||
-1.780008f, 0.006663f, 0.885957f, 0.043890f, 0.021812f, -0.1539f, -0.2766f, 0.9486f,
|
||||
-1.768401f, 0.024866f, 0.893148f, 0.039098f, 0.000065f, -0.1539f, -0.2766f, 0.9486f,
|
||||
-1.836557f, 0.024924f, 0.882110f, 0.019436f, 0.002175f, -0.1539f, -0.2766f, 0.9486f,
|
||||
-1.768401f, 0.024866f, 0.893148f, 0.039098f, 0.000065f, -0.1252f, 0.6250f, 0.7705f,
|
||||
-1.743604f, 0.049732f, 0.877005f, 0.040466f, 0.000000f, -0.1252f, 0.6250f, 0.7705f,
|
||||
-1.820297f, 0.049848f, 0.864452f, 0.019196f, 0.001968f, -0.1252f, 0.6250f, 0.7705f,
|
||||
1.787430f, 0.000000f, 0.855422f, 0.958169f, 0.038350f, 0.0359f, -0.9745f, 0.2214f,
|
||||
1.824526f, 0.006678f, 0.878805f, 0.967953f, 0.025150f, 0.0359f, -0.9745f, 0.2214f,
|
||||
1.780008f, 0.006663f, 0.885957f, 0.956110f, 0.021812f, 0.0359f, -0.9745f, 0.2214f,
|
||||
1.780008f, 0.006663f, 0.885957f, 0.956110f, 0.021812f, 0.1527f, -0.2728f, 0.9499f,
|
||||
1.824526f, 0.006678f, 0.878805f, 0.967953f, 0.025150f, 0.1527f, -0.2728f, 0.9499f,
|
||||
1.836557f, 0.024924f, 0.882110f, 0.980564f, 0.002175f, 0.1527f, -0.2728f, 0.9499f,
|
||||
1.768401f, 0.024866f, 0.893148f, 0.960902f, 0.000065f, 0.1241f, 0.6263f, 0.7697f,
|
||||
1.836557f, 0.024924f, 0.882110f, 0.980564f, 0.002175f, 0.1241f, 0.6263f, 0.7697f,
|
||||
1.820297f, 0.049848f, 0.864452f, 0.980804f, 0.001968f, 0.1241f, 0.6263f, 0.7697f,
|
||||
1.794445f, 0.000000f, 0.851240f, 0.959989f, 0.040618f, 0.0877f, -0.9858f, 0.1431f,
|
||||
1.856144f, 0.006740f, 0.859850f, 0.976309f, 0.035704f, 0.0877f, -0.9858f, 0.1431f,
|
||||
1.824526f, 0.006678f, 0.878805f, 0.967953f, 0.025150f, 0.0877f, -0.9858f, 0.1431f,
|
||||
1.856144f, 0.006740f, 0.859850f, 0.976309f, 0.035704f, 0.4662f, -0.4384f, 0.7684f,
|
||||
1.886035f, 0.025153f, 0.852220f, 0.997422f, 0.022467f, 0.4662f, -0.4384f, 0.7684f,
|
||||
1.836557f, 0.024924f, 0.882110f, 0.980564f, 0.002175f, 0.4662f, -0.4384f, 0.7684f,
|
||||
1.886035f, 0.025153f, 0.852220f, 0.997422f, 0.022467f, 0.3741f, 0.6876f, 0.6223f,
|
||||
1.876107f, 0.050306f, 0.830395f, 0.998435f, 0.024543f, 0.3741f, 0.6876f, 0.6223f,
|
||||
1.820297f, 0.049848f, 0.864452f, 0.980804f, 0.001968f, 0.3741f, 0.6876f, 0.6223f,
|
||||
1.804443f, -0.000000f, 0.828995f, 0.962429f, 0.052829f, 0.1034f, -0.9937f, 0.0439f,
|
||||
1.871401f, 0.006820f, 0.825706f, 0.979529f, 0.054779f, 0.1034f, -0.9937f, 0.0439f,
|
||||
1.856144f, 0.006740f, 0.859850f, 0.976309f, 0.035704f, 0.1034f, -0.9937f, 0.0439f,
|
||||
1.871401f, 0.006820f, 0.825706f, 0.979529f, 0.054779f, 0.5581f, -0.7940f, 0.2410f,
|
||||
1.905020f, 0.025452f, 0.809229f, 0.999915f, 0.048821f, 0.5581f, -0.7940f, 0.2410f,
|
||||
1.886035f, 0.025153f, 0.852220f, 0.997422f, 0.022467f, 0.5581f, -0.7940f, 0.2410f,
|
||||
1.905020f, 0.025452f, 0.809229f, 0.999915f, 0.048821f, 0.7426f, 0.5825f, 0.3305f,
|
||||
1.896293f, 0.050904f, 0.783980f, 1.000000f, 0.052414f, 0.7426f, 0.5825f, 0.3305f,
|
||||
1.876107f, 0.050306f, 0.830395f, 0.998435f, 0.024543f, 0.7426f, 0.5825f, 0.3305f,
|
||||
-1.787430f, 0.000000f, -0.855422f, 0.041831f, 0.961650f, -0.0359f, -0.9745f, -0.2214f,
|
||||
-1.824526f, 0.006678f, -0.878805f, 0.032047f, 0.974849f, -0.0359f, -0.9745f, -0.2214f,
|
||||
-1.780008f, 0.006663f, -0.885957f, 0.043890f, 0.978188f, -0.0359f, -0.9745f, -0.2214f,
|
||||
-1.780008f, 0.006663f, -0.885957f, 0.043890f, 0.978188f, -0.1527f, -0.2728f, -0.9499f,
|
||||
-1.824526f, 0.006678f, -0.878805f, 0.032047f, 0.974849f, -0.1527f, -0.2728f, -0.9499f,
|
||||
-1.836557f, 0.024924f, -0.882110f, 0.019436f, 0.997825f, -0.1527f, -0.2728f, -0.9499f,
|
||||
-1.768401f, 0.024866f, -0.893148f, 0.039098f, 0.999935f, -0.1241f, 0.6263f, -0.7697f,
|
||||
-1.836557f, 0.024924f, -0.882110f, 0.019436f, 0.997825f, -0.1241f, 0.6263f, -0.7697f,
|
||||
-1.820297f, 0.049848f, -0.864452f, 0.019196f, 0.998032f, -0.1241f, 0.6263f, -0.7697f,
|
||||
-1.794445f, 0.000000f, -0.851240f, 0.040011f, 0.959383f, -0.0877f, -0.9858f, -0.1431f,
|
||||
-1.856144f, 0.006740f, -0.859850f, 0.023691f, 0.964296f, -0.0877f, -0.9858f, -0.1431f,
|
||||
-1.824526f, 0.006678f, -0.878805f, 0.032047f, 0.974849f, -0.0877f, -0.9858f, -0.1431f,
|
||||
-1.856144f, 0.006740f, -0.859850f, 0.023691f, 0.964296f, -0.4662f, -0.4384f, -0.7684f,
|
||||
-1.886035f, 0.025153f, -0.852220f, 0.002578f, 0.977533f, -0.4662f, -0.4384f, -0.7684f,
|
||||
-1.836557f, 0.024924f, -0.882110f, 0.019436f, 0.997825f, -0.4662f, -0.4384f, -0.7684f,
|
||||
-1.886035f, 0.025153f, -0.852220f, 0.002578f, 0.977533f, -0.3741f, 0.6876f, -0.6223f,
|
||||
-1.876107f, 0.050306f, -0.830395f, 0.001565f, 0.975457f, -0.3741f, 0.6876f, -0.6223f,
|
||||
-1.820297f, 0.049848f, -0.864452f, 0.019196f, 0.998032f, -0.3741f, 0.6876f, -0.6223f,
|
||||
-1.804443f, -0.000000f, -0.828995f, 0.037571f, 0.947172f, -0.1034f, -0.9937f, -0.0439f,
|
||||
-1.871401f, 0.006820f, -0.825706f, 0.020471f, 0.945221f, -0.1034f, -0.9937f, -0.0439f,
|
||||
-1.856144f, 0.006740f, -0.859850f, 0.023691f, 0.964296f, -0.1034f, -0.9937f, -0.0439f,
|
||||
-1.871401f, 0.006820f, -0.825706f, 0.020471f, 0.945221f, -0.5581f, -0.7940f, -0.2410f,
|
||||
-1.905020f, 0.025452f, -0.809229f, 0.000085f, 0.951179f, -0.5581f, -0.7940f, -0.2410f,
|
||||
-1.886035f, 0.025153f, -0.852220f, 0.002578f, 0.977533f, -0.5581f, -0.7940f, -0.2410f,
|
||||
-1.905020f, 0.025452f, -0.809229f, 0.000085f, 0.951179f, -0.7426f, 0.5825f, -0.3305f,
|
||||
-1.896293f, 0.050904f, -0.783980f, 0.000000f, 0.947586f, -0.7426f, 0.5825f, -0.3305f,
|
||||
-1.876107f, 0.050306f, -0.830395f, 0.001565f, 0.975457f, -0.7426f, 0.5825f, -0.3305f,
|
||||
1.787430f, -0.000000f, -0.855422f, 0.958169f, 0.961650f, 0.0353f, -0.9746f, -0.2212f,
|
||||
1.775316f, -0.000000f, -0.857357f, 0.955005f, 0.962648f, 0.0353f, -0.9746f, -0.2212f,
|
||||
1.780008f, 0.006663f, -0.885957f, 0.956110f, 0.978188f, 0.0353f, -0.9746f, -0.2212f,
|
||||
1.780008f, 0.006663f, -0.885957f, 0.956110f, 0.978188f, 0.1539f, -0.2766f, -0.9486f,
|
||||
1.768401f, 0.024866f, -0.893148f, 0.960902f, 0.999935f, 0.1539f, -0.2766f, -0.9486f,
|
||||
1.836557f, 0.024924f, -0.882110f, 0.980564f, 0.997825f, 0.1539f, -0.2766f, -0.9486f,
|
||||
1.768401f, 0.024866f, -0.893148f, 0.960902f, 0.999935f, 0.1252f, 0.6250f, -0.7705f,
|
||||
1.743604f, 0.049732f, -0.877005f, 0.959534f, 1.000000f, 0.1252f, 0.6250f, -0.7705f,
|
||||
1.820297f, 0.049848f, -0.864452f, 0.980804f, 0.998032f, 0.1252f, 0.6250f, -0.7705f,
|
||||
1.794445f, -0.000000f, -0.851240f, 0.959989f, 0.959382f, 0.0863f, -0.9857f, -0.1447f,
|
||||
1.787430f, -0.000000f, -0.855422f, 0.958169f, 0.961650f, 0.0863f, -0.9857f, -0.1447f,
|
||||
1.824526f, 0.006678f, -0.878805f, 0.967953f, 0.974850f, 0.0863f, -0.9857f, -0.1447f,
|
||||
1.856144f, 0.006740f, -0.859850f, 0.976309f, 0.964296f, 0.4615f, -0.4435f, -0.7684f,
|
||||
1.824526f, 0.006678f, -0.878805f, 0.967953f, 0.974850f, 0.4615f, -0.4435f, -0.7684f,
|
||||
1.836557f, 0.024924f, -0.882110f, 0.980564f, 0.997825f, 0.4615f, -0.4435f, -0.7684f,
|
||||
1.886035f, 0.025153f, -0.852220f, 0.997422f, 0.977533f, 0.3739f, 0.6861f, -0.6241f,
|
||||
1.836557f, 0.024924f, -0.882110f, 0.980564f, 0.997825f, 0.3739f, 0.6861f, -0.6241f,
|
||||
1.820297f, 0.049848f, -0.864452f, 0.980804f, 0.998032f, 0.3739f, 0.6861f, -0.6241f,
|
||||
1.804443f, 0.000000f, -0.828995f, 0.962429f, 0.947171f, 0.1021f, -0.9937f, -0.0459f,
|
||||
1.794445f, -0.000000f, -0.851240f, 0.959989f, 0.959382f, 0.1021f, -0.9937f, -0.0459f,
|
||||
1.856144f, 0.006740f, -0.859850f, 0.976309f, 0.964296f, 0.1021f, -0.9937f, -0.0459f,
|
||||
1.871401f, 0.006820f, -0.825706f, 0.979529f, 0.945221f, 0.5531f, -0.7962f, -0.2453f,
|
||||
1.856144f, 0.006740f, -0.859850f, 0.976309f, 0.964296f, 0.5531f, -0.7962f, -0.2453f,
|
||||
1.886035f, 0.025153f, -0.852220f, 0.997422f, 0.977533f, 0.5531f, -0.7962f, -0.2453f,
|
||||
1.905020f, 0.025452f, -0.809229f, 0.999915f, 0.951179f, 0.7428f, 0.5813f, -0.3321f,
|
||||
1.886035f, 0.025153f, -0.852220f, 0.997422f, 0.977533f, 0.7428f, 0.5813f, -0.3321f,
|
||||
1.876107f, 0.050306f, -0.830395f, 0.998435f, 0.975457f, 0.7428f, 0.5813f, -0.3321f,
|
||||
1.871401f, 0.006820f, -0.825706f, 0.979529f, 0.945221f, 0.1013f, -0.9949f, -0.0000f,
|
||||
1.905020f, 0.025452f, -0.809229f, 0.999915f, 0.951179f, 0.4847f, -0.8747f, -0.0000f,
|
||||
1.896293f, 0.050904f, -0.783980f, 1.000000f, 0.947586f, 0.9459f, 0.3244f, -0.0000f,
|
||||
-1.780008f, 0.006663f, -0.885957f, 0.043890f, 0.978188f, -0.0000f, -0.9739f, -0.2269f,
|
||||
-1.768401f, 0.024866f, -0.893148f, 0.039098f, 0.999935f, -0.0000f, -0.3674f, -0.9300f,
|
||||
-1.743604f, 0.049732f, -0.877005f, 0.040466f, 1.000000f, -0.0000f, 0.5445f, -0.8387f,
|
||||
-1.871401f, 0.006820f, 0.825706f, 0.020471f, 0.054779f, -0.1013f, -0.9949f, -0.0000f,
|
||||
-1.905020f, 0.025452f, 0.809229f, 0.000085f, 0.048821f, -0.4847f, -0.8747f, -0.0000f,
|
||||
-1.896293f, 0.050904f, 0.783980f, 0.000000f, 0.052414f, -0.9459f, 0.3244f, -0.0000f,
|
||||
1.780008f, 0.006663f, 0.885957f, 0.956110f, 0.021812f, -0.0000f, -0.9739f, 0.2269f,
|
||||
1.768401f, 0.024866f, 0.893148f, 0.960902f, 0.000065f, -0.0000f, -0.3674f, 0.9300f,
|
||||
1.743604f, 0.049732f, 0.877005f, 0.959534f, 0.000000f, -0.0000f, 0.5445f, 0.8387f,
|
||||
1.288476f, 0.452916f, -0.461143f, 0.951006f, 1.000000f, 0.1120f, 0.7728f, -0.6247f,
|
||||
1.357419f, 0.458580f, -0.441779f, 0.977775f, 1.000000f, 0.1120f, 0.7728f, -0.6247f,
|
||||
|
||||
@ -50,71 +50,38 @@ v -1.329576 0.486997 0.389481
|
||||
v -1.418335 0.454219 0.412896
|
||||
v -1.402199 0.469791 0.369685
|
||||
v -1.380222 0.474526 0.398518
|
||||
v 1.775316 -0.000000 -0.857357
|
||||
v 1.743604 0.049732 -0.877005
|
||||
v 1.780008 0.006663 -0.885957
|
||||
v 1.768401 0.024866 -0.893148
|
||||
v 1.804443 0.000000 -0.828995
|
||||
v 1.896293 0.050904 -0.783980
|
||||
v 1.871401 0.006820 -0.825706
|
||||
v 1.905020 0.025452 -0.809229
|
||||
v 1.787430 -0.000000 -0.855422
|
||||
v 1.820297 0.049848 -0.864452
|
||||
v 1.824526 0.006678 -0.878805
|
||||
v 1.836557 0.024924 -0.882110
|
||||
v 1.794445 -0.000000 -0.851240
|
||||
v 1.876107 0.050306 -0.830395
|
||||
v 1.856144 0.006740 -0.859850
|
||||
v 1.886035 0.025153 -0.852220
|
||||
v -1.804443 -0.000000 -0.828995
|
||||
v -1.896293 0.050904 -0.783980
|
||||
v -1.871401 0.006820 -0.825706
|
||||
v -1.905020 0.025452 -0.809229
|
||||
v -1.775316 0.000000 -0.857357
|
||||
v -1.743604 0.049732 -0.877005
|
||||
v -1.780008 0.006663 -0.885957
|
||||
v -1.768401 0.024866 -0.893148
|
||||
v -1.794445 0.000000 -0.851240
|
||||
v -1.876107 0.050306 -0.830395
|
||||
v -1.856144 0.006740 -0.859850
|
||||
v -1.886035 0.025153 -0.852220
|
||||
v -1.787430 0.000000 -0.855422
|
||||
v -1.820297 0.049848 -0.864452
|
||||
v -1.824526 0.006678 -0.878805
|
||||
v -1.836557 0.024924 -0.882110
|
||||
v 1.804443 -0.000000 0.828995
|
||||
v 1.896293 0.050904 0.783980
|
||||
v 1.871401 0.006820 0.825706
|
||||
v 1.905020 0.025452 0.809229
|
||||
v 1.775316 0.000000 0.857357
|
||||
v 1.743604 0.049732 0.877005
|
||||
v 1.780008 0.006663 0.885957
|
||||
v 1.768401 0.024866 0.893148
|
||||
v 1.794445 0.000000 0.851240
|
||||
v 1.876107 0.050306 0.830395
|
||||
v 1.856144 0.006740 0.859850
|
||||
v 1.886035 0.025153 0.852220
|
||||
v 1.787430 0.000000 0.855422
|
||||
v 1.820297 0.049848 0.864452
|
||||
v 1.824526 0.006678 0.878805
|
||||
v 1.836557 0.024924 0.882110
|
||||
v -1.775316 -0.000000 0.857357
|
||||
v -1.743604 0.049732 0.877005
|
||||
v -1.780008 0.006663 0.885957
|
||||
v -1.768401 0.024866 0.893148
|
||||
v -1.804443 0.000000 0.828995
|
||||
v -1.896293 0.050904 0.783980
|
||||
v -1.871401 0.006820 0.825706
|
||||
v -1.905020 0.025452 0.809229
|
||||
v -1.787430 -0.000000 0.855422
|
||||
v -1.820297 0.049848 0.864452
|
||||
v -1.824526 0.006678 0.878805
|
||||
v -1.836557 0.024924 0.882110
|
||||
v -1.794445 -0.000000 0.851240
|
||||
v -1.876107 0.050306 0.830395
|
||||
v -1.856144 0.006740 0.859850
|
||||
v -1.886035 0.025153 0.852220
|
||||
vn -0.0000 -1.0000 -0.0000
|
||||
vn 0.5143 0.8250 -0.2343
|
||||
vn 0.2884 0.8265 0.4834
|
||||
vn -0.1120 0.7728 -0.6247
|
||||
@ -171,53 +138,21 @@ vn -0.0000 0.7180 -0.6961
|
||||
vn -0.5015 0.8273 -0.2532
|
||||
vn 0.6631 0.7485 -0.0000
|
||||
vn 0.2883 0.8265 -0.4835
|
||||
vn -0.1034 -0.9937 0.0439
|
||||
vn -0.5581 -0.7940 0.2410
|
||||
vn -0.7426 0.5825 0.3305
|
||||
vn -0.0877 -0.9858 0.1431
|
||||
vn -0.4662 -0.4384 0.7684
|
||||
vn -0.3741 0.6876 0.6223
|
||||
vn -0.0359 -0.9745 0.2214
|
||||
vn -0.1527 -0.2728 0.9499
|
||||
vn -0.1241 0.6263 0.7697
|
||||
vn 0.0353 -0.9746 0.2213
|
||||
vn 0.1539 -0.2766 0.9486
|
||||
vn 0.1252 0.6250 0.7705
|
||||
vn 0.0863 -0.9857 0.1447
|
||||
vn 0.4615 -0.4435 0.7684
|
||||
vn 0.3739 0.6861 0.6241
|
||||
vn 0.1021 -0.9937 0.0459
|
||||
vn 0.5531 -0.7962 0.2453
|
||||
vn 0.7428 0.5813 0.3321
|
||||
vn -0.0353 -0.9746 -0.2213
|
||||
vn -0.1539 -0.2766 -0.9486
|
||||
vn -0.1252 0.6250 -0.7705
|
||||
vn -0.0863 -0.9857 -0.1447
|
||||
vn -0.4615 -0.4435 -0.7684
|
||||
vn -0.3739 0.6861 -0.6241
|
||||
vn -0.1021 -0.9937 -0.0459
|
||||
vn -0.5531 -0.7962 -0.2453
|
||||
vn -0.7428 0.5813 -0.3321
|
||||
vn 0.0359 -0.9745 -0.2214
|
||||
vn 0.1527 -0.2728 -0.9499
|
||||
vn 0.1241 0.6263 -0.7697
|
||||
vn 0.0877 -0.9858 -0.1431
|
||||
vn 0.4662 -0.4384 -0.7684
|
||||
vn 0.3741 0.6876 -0.6223
|
||||
vn 0.1034 -0.9937 -0.0439
|
||||
vn 0.5581 -0.7940 -0.2410
|
||||
vn 0.7426 0.5825 -0.3305
|
||||
vn 0.1013 -0.9949 -0.0000
|
||||
vn 0.4847 -0.8747 -0.0000
|
||||
vn 0.9459 0.3244 -0.0000
|
||||
vn -0.0000 -0.9739 -0.2269
|
||||
vn -0.0000 -0.3674 -0.9300
|
||||
vn -0.0000 0.5445 -0.8387
|
||||
vn -0.1013 -0.9949 -0.0000
|
||||
vn -0.4847 -0.8747 -0.0000
|
||||
vn -0.9459 0.3244 -0.0000
|
||||
vn -0.0000 -0.9739 0.2269
|
||||
vn -0.0000 -0.3674 0.9300
|
||||
vn -0.0000 0.5445 0.8387
|
||||
vn 0.1024 0.7678 -0.6324
|
||||
vn 0.5015 0.8273 -0.2532
|
||||
@ -255,46 +190,19 @@ vn -0.2883 0.8265 -0.4835
|
||||
vn 0.5143 0.8250 0.2343
|
||||
vn -0.5143 0.8250 -0.2343
|
||||
vn 0.2884 0.8265 -0.4834
|
||||
vn -0.1021 -0.9937 0.0459
|
||||
vn -0.5531 -0.7962 0.2453
|
||||
vn -0.7428 0.5813 0.3321
|
||||
vn -0.0863 -0.9857 0.1447
|
||||
vn -0.4615 -0.4435 0.7684
|
||||
vn -0.3739 0.6861 0.6241
|
||||
vn -0.0353 -0.9746 0.2212
|
||||
vn -0.1539 -0.2766 0.9486
|
||||
vn -0.1252 0.6250 0.7705
|
||||
vn 0.0359 -0.9745 0.2214
|
||||
vn 0.1527 -0.2728 0.9499
|
||||
vn 0.1241 0.6263 0.7697
|
||||
vn 0.0877 -0.9858 0.1431
|
||||
vn 0.4662 -0.4384 0.7684
|
||||
vn 0.3741 0.6876 0.6223
|
||||
vn 0.1034 -0.9937 0.0439
|
||||
vn 0.5581 -0.7940 0.2410
|
||||
vn 0.7426 0.5825 0.3305
|
||||
vn -0.0359 -0.9745 -0.2214
|
||||
vn -0.1527 -0.2728 -0.9499
|
||||
vn -0.1241 0.6263 -0.7697
|
||||
vn -0.0877 -0.9858 -0.1431
|
||||
vn -0.4662 -0.4384 -0.7684
|
||||
vn -0.3741 0.6876 -0.6223
|
||||
vn -0.1034 -0.9937 -0.0439
|
||||
vn -0.5581 -0.7940 -0.2410
|
||||
vn -0.7426 0.5825 -0.3305
|
||||
vn 0.0353 -0.9746 -0.2212
|
||||
vn 0.1539 -0.2766 -0.9486
|
||||
vn 0.1252 0.6250 -0.7705
|
||||
vn 0.0863 -0.9857 -0.1447
|
||||
vn 0.4615 -0.4435 -0.7684
|
||||
vn 0.3739 0.6861 -0.6241
|
||||
vn 0.1021 -0.9937 -0.0459
|
||||
vn 0.5531 -0.7962 -0.2453
|
||||
vn 0.7428 0.5813 -0.3321
|
||||
vn 0.1120 0.7728 -0.6247
|
||||
vt 0.044995 0.962648
|
||||
vt 0.962429 0.947171
|
||||
vt 0.955005 0.037352
|
||||
vt 1.000000 0.967273
|
||||
vt 1.000000 0.947586
|
||||
vt 0.998435 0.975457
|
||||
@ -361,277 +269,170 @@ vt 0.000000 0.947586
|
||||
vt 1.000000 0.947586
|
||||
vt 0.998435 0.975457
|
||||
vt 0.980804 0.998032
|
||||
vt 0.037571 0.052829
|
||||
vt 0.023691 0.035704
|
||||
vt 0.020471 0.054779
|
||||
vt 0.002578 0.022467
|
||||
vt 0.000085 0.048821
|
||||
vt 0.001565 0.024543
|
||||
vt 0.040011 0.040618
|
||||
vt 0.032047 0.025150
|
||||
vt 0.019436 0.002175
|
||||
vt 0.002578 0.022467
|
||||
vt 0.019196 0.001968
|
||||
vt 0.041831 0.038350
|
||||
vt 0.043890 0.021812
|
||||
vt 0.039098 0.000065
|
||||
vt 0.958169 0.038350
|
||||
vt 0.956110 0.021812
|
||||
vt 0.980564 0.002175
|
||||
vt 0.019436 0.002175
|
||||
vt 0.960902 0.000065
|
||||
vt 0.959989 0.040618
|
||||
vt 0.967953 0.025150
|
||||
vt 0.976309 0.035704
|
||||
vt 0.997422 0.022467
|
||||
vt 0.980804 0.001968
|
||||
vt 0.962429 0.052829
|
||||
vt 0.979529 0.054779
|
||||
vt 0.980564 0.002175
|
||||
vt 0.999915 0.048821
|
||||
vt 0.041831 0.961650
|
||||
vt 0.043890 0.978188
|
||||
vt 0.019436 0.997825
|
||||
vt 0.039098 0.999935
|
||||
vt 0.040011 0.959383
|
||||
vt 0.032047 0.974849
|
||||
vt 0.023691 0.964296
|
||||
vt 0.002578 0.977533
|
||||
vt 0.037571 0.947172
|
||||
vt 0.020471 0.945221
|
||||
vt 0.019436 0.997825
|
||||
vt 0.000085 0.951179
|
||||
vt 0.001565 0.975457
|
||||
vt 0.958169 0.961650
|
||||
vt 0.956110 0.978188
|
||||
vt 0.967953 0.974850
|
||||
vt 0.980564 0.997825
|
||||
vt 0.960902 0.999935
|
||||
vt 0.980804 0.998032
|
||||
vt 0.959989 0.959382
|
||||
vt 0.976309 0.964296
|
||||
vt 0.980564 0.997825
|
||||
vt 0.997422 0.977533
|
||||
vt 0.979529 0.945221
|
||||
vt 0.999915 0.951179
|
||||
vt 1.000000 0.052414
|
||||
vt 0.955005 0.962648
|
||||
vt 0.044995 0.037352
|
||||
vt 0.959534 1.000000
|
||||
vt 0.040466 0.000000
|
||||
s 0
|
||||
f 69/1/1 53/2/1 85/3/1
|
||||
f 4/4/2 54/5/2 62/6/2
|
||||
f 34/7/3 90/8/3 29/9/3
|
||||
f 15/10/4 78/11/4 22/12/4
|
||||
f 26/13/5 14/14/5 38/15/5
|
||||
f 4/4/6 5/16/6 1/17/6
|
||||
f 4/4/7 9/18/7 6/19/7
|
||||
f 7/20/8 8/21/8 2/22/8
|
||||
f 7/20/9 12/23/9 9/18/9
|
||||
f 10/24/10 11/25/10 3/26/10
|
||||
f 5/16/11 12/23/11 10/24/11
|
||||
f 6/19/12 9/18/12 12/23/12
|
||||
f 16/27/13 17/28/13 13/29/13
|
||||
f 16/27/14 21/30/14 18/31/14
|
||||
f 19/32/15 20/33/15 14/14/15
|
||||
f 23/34/16 21/30/16 19/32/16
|
||||
f 22/12/17 23/34/17 15/10/17
|
||||
f 17/28/18 24/35/18 22/12/18
|
||||
f 18/31/19 21/30/19 24/35/19
|
||||
f 28/36/20 29/9/20 25/37/20
|
||||
f 28/36/21 33/38/21 30/39/21
|
||||
f 31/40/22 32/41/22 26/13/22
|
||||
f 35/42/23 33/38/23 31/40/23
|
||||
f 34/7/24 35/42/24 27/43/24
|
||||
f 29/9/25 36/44/25 34/7/25
|
||||
f 30/39/26 33/38/26 36/44/26
|
||||
f 40/45/27 41/46/27 37/47/27
|
||||
f 40/45/28 45/48/28 42/49/28
|
||||
f 43/50/29 44/51/29 38/15/29
|
||||
f 47/52/30 45/48/30 43/50/30
|
||||
f 46/53/31 47/52/31 39/54/31
|
||||
f 46/53/32 42/49/32 48/55/32
|
||||
f 42/49/33 45/48/33 48/55/33
|
||||
f 1/17/34 28/36/34 25/37/34
|
||||
f 5/16/35 32/41/35 28/36/35
|
||||
f 32/41/36 3/26/36 26/13/36
|
||||
f 27/43/37 40/45/37 37/47/37
|
||||
f 40/45/38 31/40/38 44/51/38
|
||||
f 31/40/39 38/15/39 44/51/39
|
||||
f 39/54/40 16/27/40 13/29/40
|
||||
f 47/52/41 20/33/41 16/27/41
|
||||
f 20/33/42 38/15/42 14/14/42
|
||||
f 15/10/43 7/20/43 2/22/43
|
||||
f 7/20/44 19/32/44 11/25/44
|
||||
f 19/32/45 3/26/45 11/25/45
|
||||
f 110/56/46 41/46/46 46/53/46
|
||||
f 102/57/47 46/53/47 39/54/47
|
||||
f 27/43/48 98/58/48 86/59/48
|
||||
f 106/60/49 37/47/49 41/46/49
|
||||
f 27/43/50 94/61/50 34/7/50
|
||||
f 22/12/51 74/62/51 17/28/51
|
||||
f 29/9/52 82/63/52 25/37/52
|
||||
f 13/29/53 102/57/53 39/54/53
|
||||
f 15/10/54 50/64/54 70/65/54
|
||||
f 17/28/55 66/66/55 13/29/55
|
||||
f 25/37/56 54/67/56 1/17/56
|
||||
f 8/21/57 62/68/57 58/69/57
|
||||
f 101/70/58 111/71/58 103/72/58
|
||||
f 103/72/59 112/73/59 104/74/59
|
||||
f 104/74/60 110/75/60 102/57/60
|
||||
f 109/76/61 107/77/61 111/71/61
|
||||
f 111/71/62 108/78/62 112/73/62
|
||||
f 112/73/63 106/79/63 110/56/63
|
||||
f 105/80/64 99/81/64 107/77/64
|
||||
f 99/81/65 108/78/65 107/77/65
|
||||
f 100/82/66 106/60/66 108/78/66
|
||||
f 93/83/67 87/84/67 85/3/67
|
||||
f 87/84/68 96/85/68 88/86/68
|
||||
f 88/86/69 94/61/69 86/59/69
|
||||
f 89/87/70 95/88/70 93/83/70
|
||||
f 91/89/71 96/85/71 95/88/71
|
||||
f 92/90/72 94/91/72 96/85/72
|
||||
f 81/92/73 91/89/73 89/87/73
|
||||
f 83/93/74 92/90/74 91/89/74
|
||||
f 84/94/75 90/8/75 92/90/75
|
||||
f 77/95/76 71/96/76 69/1/76
|
||||
f 71/96/77 80/97/77 72/98/77
|
||||
f 72/98/78 78/11/78 70/65/78
|
||||
f 73/99/79 79/100/79 77/95/79
|
||||
f 75/101/80 80/97/80 79/100/80
|
||||
f 76/102/81 78/11/81 80/97/81
|
||||
f 65/103/82 75/101/82 73/99/82
|
||||
f 67/104/83 76/102/83 75/101/83
|
||||
f 68/105/84 74/106/84 76/102/84
|
||||
f 57/107/85 51/108/85 59/109/85
|
||||
f 51/108/86 60/110/86 59/109/86
|
||||
f 52/111/87 58/112/87 60/110/87
|
||||
f 61/113/88 59/109/88 63/114/88
|
||||
f 63/114/89 60/110/89 64/115/89
|
||||
f 64/115/90 58/69/90 62/68/90
|
||||
f 53/2/91 63/114/91 55/116/91
|
||||
f 55/116/92 64/115/92 56/117/92
|
||||
f 56/117/93 62/6/93 54/5/93
|
||||
f 53/2/94 83/93/94 81/92/94
|
||||
f 55/116/95 84/94/95 83/93/95
|
||||
f 56/117/96 82/118/96 84/94/96
|
||||
f 69/1/97 51/108/97 49/119/97
|
||||
f 71/96/98 52/111/98 51/108/98
|
||||
f 72/98/99 50/64/99 52/111/99
|
||||
f 101/70/100 67/104/100 65/103/100
|
||||
f 103/72/101 68/105/101 67/104/101
|
||||
f 104/74/102 66/66/102 68/105/102
|
||||
f 85/3/103 99/81/103 97/120/103
|
||||
f 87/84/104 100/82/104 99/81/104
|
||||
f 88/86/105 98/58/105 100/82/105
|
||||
f 2/22/106 58/112/106 50/121/106
|
||||
f 85/3/1 97/120/1 105/80/1
|
||||
f 105/80/1 109/76/1 101/70/1
|
||||
f 101/70/1 65/103/1 73/99/1
|
||||
f 73/99/1 77/95/1 69/1/1
|
||||
f 69/1/1 49/119/1 57/107/1
|
||||
f 57/107/1 61/113/1 53/2/1
|
||||
f 53/2/1 81/92/1 89/87/1
|
||||
f 89/87/1 93/83/1 85/3/1
|
||||
f 85/3/1 105/80/1 101/70/1
|
||||
f 101/70/1 73/99/1 69/1/1
|
||||
f 69/1/1 57/107/1 53/2/1
|
||||
f 53/2/1 89/87/1 85/3/1
|
||||
f 85/3/1 101/70/1 69/1/1
|
||||
f 4/4/107 1/17/107 54/5/107
|
||||
f 34/7/108 94/91/108 90/8/108
|
||||
f 15/10/109 70/65/109 78/11/109
|
||||
f 26/13/5 3/26/5 14/14/5
|
||||
f 4/4/110 6/19/110 5/16/110
|
||||
f 4/4/111 8/21/111 9/18/111
|
||||
f 7/20/112 9/18/112 8/21/112
|
||||
f 7/20/113 11/25/113 12/23/113
|
||||
f 10/24/114 12/23/114 11/25/114
|
||||
f 5/16/115 6/19/115 12/23/115
|
||||
f 16/27/116 18/31/116 17/28/116
|
||||
f 16/27/117 20/33/117 21/30/117
|
||||
f 19/32/118 21/30/118 20/33/118
|
||||
f 23/34/119 24/35/119 21/30/119
|
||||
f 22/12/120 24/35/120 23/34/120
|
||||
f 17/28/121 18/31/121 24/35/121
|
||||
f 28/36/122 30/39/122 29/9/122
|
||||
f 28/36/123 32/41/123 33/38/123
|
||||
f 31/40/124 33/38/124 32/41/124
|
||||
f 35/42/125 36/44/125 33/38/125
|
||||
f 34/7/126 36/44/126 35/42/126
|
||||
f 29/9/127 30/39/127 36/44/127
|
||||
f 40/45/128 42/49/128 41/46/128
|
||||
f 40/45/129 44/51/129 45/48/129
|
||||
f 43/50/130 45/48/130 44/51/130
|
||||
f 47/52/131 48/55/131 45/48/131
|
||||
f 46/53/132 48/55/132 47/52/132
|
||||
f 46/53/133 41/46/133 42/49/133
|
||||
f 1/17/34 5/16/34 28/36/34
|
||||
f 5/16/35 10/24/35 32/41/35
|
||||
f 32/41/36 10/24/36 3/26/36
|
||||
f 27/43/37 35/42/37 40/45/37
|
||||
f 40/45/38 35/42/38 31/40/38
|
||||
f 31/40/39 26/13/39 38/15/39
|
||||
f 39/54/40 47/52/40 16/27/40
|
||||
f 47/52/41 43/50/41 20/33/41
|
||||
f 20/33/42 43/50/42 38/15/42
|
||||
f 15/10/43 23/34/43 7/20/43
|
||||
f 7/20/44 23/34/44 19/32/44
|
||||
f 19/32/45 14/14/45 3/26/45
|
||||
f 110/56/134 106/79/134 41/46/134
|
||||
f 102/57/135 110/75/135 46/53/135
|
||||
f 27/43/48 37/47/48 98/58/48
|
||||
f 106/60/136 98/122/136 37/47/136
|
||||
f 27/43/137 86/59/137 94/61/137
|
||||
f 22/12/138 78/11/138 74/62/138
|
||||
f 29/9/139 90/8/139 82/63/139
|
||||
f 13/29/53 66/66/53 102/57/53
|
||||
f 15/10/54 2/22/54 50/64/54
|
||||
f 17/28/140 74/106/140 66/66/140
|
||||
f 25/37/56 82/118/56 54/67/56
|
||||
f 8/21/141 4/4/141 62/68/141
|
||||
f 101/70/142 109/76/142 111/71/142
|
||||
f 103/72/143 111/71/143 112/73/143
|
||||
f 104/74/144 112/73/144 110/75/144
|
||||
f 109/76/145 105/80/145 107/77/145
|
||||
f 111/71/146 107/77/146 108/78/146
|
||||
f 112/73/147 108/78/147 106/79/147
|
||||
f 105/80/148 97/120/148 99/81/148
|
||||
f 99/81/149 100/82/149 108/78/149
|
||||
f 100/82/150 98/122/150 106/60/150
|
||||
f 93/83/151 95/88/151 87/84/151
|
||||
f 87/84/152 95/88/152 96/85/152
|
||||
f 88/86/153 96/85/153 94/61/153
|
||||
f 89/87/154 91/89/154 95/88/154
|
||||
f 91/89/155 92/90/155 96/85/155
|
||||
f 92/90/156 90/8/156 94/91/156
|
||||
f 81/92/157 83/93/157 91/89/157
|
||||
f 83/93/158 84/94/158 92/90/158
|
||||
f 84/94/159 82/63/159 90/8/159
|
||||
f 77/95/160 79/100/160 71/96/160
|
||||
f 71/96/161 79/100/161 80/97/161
|
||||
f 72/98/162 80/97/162 78/11/162
|
||||
f 73/99/163 75/101/163 79/100/163
|
||||
f 75/101/164 76/102/164 80/97/164
|
||||
f 76/102/165 74/62/165 78/11/165
|
||||
f 65/103/166 67/104/166 75/101/166
|
||||
f 67/104/167 68/105/167 76/102/167
|
||||
f 68/105/168 66/66/168 74/106/168
|
||||
f 57/107/169 49/119/169 51/108/169
|
||||
f 51/108/170 52/111/170 60/110/170
|
||||
f 52/111/171 50/121/171 58/112/171
|
||||
f 61/113/172 57/107/172 59/109/172
|
||||
f 63/114/173 59/109/173 60/110/173
|
||||
f 64/115/174 60/110/174 58/69/174
|
||||
f 53/2/175 61/113/175 63/114/175
|
||||
f 55/116/176 63/114/176 64/115/176
|
||||
f 56/117/177 64/115/177 62/6/177
|
||||
f 53/2/94 55/116/94 83/93/94
|
||||
f 55/116/95 56/117/95 84/94/95
|
||||
f 56/117/96 54/67/96 82/118/96
|
||||
f 69/1/97 71/96/97 51/108/97
|
||||
f 71/96/98 72/98/98 52/111/98
|
||||
f 72/98/99 70/65/99 50/64/99
|
||||
f 101/70/100 103/72/100 67/104/100
|
||||
f 103/72/101 104/74/101 68/105/101
|
||||
f 104/74/102 102/57/102 66/66/102
|
||||
f 85/3/103 87/84/103 99/81/103
|
||||
f 87/84/104 88/86/104 100/82/104
|
||||
f 88/86/105 86/59/105 98/58/105
|
||||
f 2/22/178 8/21/178 58/112/178
|
||||
f 4/1/1 51/2/1 55/3/1
|
||||
f 34/4/2 69/5/2 29/6/2
|
||||
f 15/7/3 63/8/3 22/9/3
|
||||
f 26/10/4 14/11/4 38/12/4
|
||||
f 4/1/5 5/13/5 1/14/5
|
||||
f 4/1/6 9/15/6 6/16/6
|
||||
f 7/17/7 8/18/7 2/19/7
|
||||
f 7/17/8 12/20/8 9/15/8
|
||||
f 10/21/9 11/22/9 3/23/9
|
||||
f 5/13/10 12/20/10 10/21/10
|
||||
f 6/16/11 9/15/11 12/20/11
|
||||
f 16/24/12 17/25/12 13/26/12
|
||||
f 16/24/13 21/27/13 18/28/13
|
||||
f 19/29/14 20/30/14 14/11/14
|
||||
f 23/31/15 21/27/15 19/29/15
|
||||
f 22/9/16 23/31/16 15/7/16
|
||||
f 17/25/17 24/32/17 22/9/17
|
||||
f 18/28/18 21/27/18 24/32/18
|
||||
f 28/33/19 29/6/19 25/34/19
|
||||
f 28/33/20 33/35/20 30/36/20
|
||||
f 31/37/21 32/38/21 26/10/21
|
||||
f 35/39/22 33/35/22 31/37/22
|
||||
f 34/4/23 35/39/23 27/40/23
|
||||
f 29/6/24 36/41/24 34/4/24
|
||||
f 30/36/25 33/35/25 36/41/25
|
||||
f 40/42/26 41/43/26 37/44/26
|
||||
f 40/42/27 45/45/27 42/46/27
|
||||
f 43/47/28 44/48/28 38/12/28
|
||||
f 47/49/29 45/45/29 43/47/29
|
||||
f 46/50/30 47/49/30 39/51/30
|
||||
f 46/50/31 42/46/31 48/52/31
|
||||
f 42/46/32 45/45/32 48/52/32
|
||||
f 1/14/33 28/33/33 25/34/33
|
||||
f 5/13/34 32/38/34 28/33/34
|
||||
f 32/38/35 3/23/35 26/10/35
|
||||
f 27/40/36 40/42/36 37/44/36
|
||||
f 40/42/37 31/37/37 44/48/37
|
||||
f 31/37/38 38/12/38 44/48/38
|
||||
f 39/51/39 16/24/39 13/26/39
|
||||
f 47/49/40 20/30/40 16/24/40
|
||||
f 20/30/41 38/12/41 14/11/41
|
||||
f 15/7/42 7/17/42 2/19/42
|
||||
f 7/17/43 19/29/43 11/22/43
|
||||
f 19/29/44 3/23/44 11/22/44
|
||||
f 79/53/45 41/43/45 46/50/45
|
||||
f 75/54/46 46/50/46 39/51/46
|
||||
f 27/40/47 73/55/47 67/56/47
|
||||
f 77/57/48 37/44/48 41/43/48
|
||||
f 27/40/49 71/58/49 34/4/49
|
||||
f 22/9/50 61/59/50 17/25/50
|
||||
f 29/6/51 65/60/51 25/34/51
|
||||
f 13/26/52 75/54/52 39/51/52
|
||||
f 15/7/53 49/61/53 59/62/53
|
||||
f 17/25/54 57/63/54 13/26/54
|
||||
f 25/34/55 51/64/55 1/14/55
|
||||
f 8/18/56 55/65/56 53/66/56
|
||||
f 76/67/57 79/68/57 75/54/57
|
||||
f 80/69/58 77/70/58 79/53/58
|
||||
f 74/71/59 77/57/59 78/72/59
|
||||
f 68/73/60 71/58/60 67/56/60
|
||||
f 70/74/61 71/75/61 72/76/61
|
||||
f 66/77/62 69/5/62 70/74/62
|
||||
f 60/78/63 63/8/63 59/62/63
|
||||
f 62/79/64 63/8/64 64/80/64
|
||||
f 58/81/65 61/82/65 62/79/65
|
||||
f 50/83/66 53/84/66 54/85/66
|
||||
f 56/86/67 53/66/67 55/65/67
|
||||
f 52/87/68 55/3/68 51/2/68
|
||||
f 52/87/69 65/88/69 66/77/69
|
||||
f 60/78/70 49/61/70 50/83/70
|
||||
f 76/67/71 57/63/71 58/81/71
|
||||
f 68/73/72 73/55/72 74/71/72
|
||||
f 2/19/73 53/84/73 49/89/73
|
||||
f 4/1/74 1/14/74 51/2/74
|
||||
f 34/4/75 71/75/75 69/5/75
|
||||
f 15/7/76 59/62/76 63/8/76
|
||||
f 26/10/4 3/23/4 14/11/4
|
||||
f 4/1/77 6/16/77 5/13/77
|
||||
f 4/1/78 8/18/78 9/15/78
|
||||
f 7/17/79 9/15/79 8/18/79
|
||||
f 7/17/80 11/22/80 12/20/80
|
||||
f 10/21/81 12/20/81 11/22/81
|
||||
f 5/13/82 6/16/82 12/20/82
|
||||
f 16/24/83 18/28/83 17/25/83
|
||||
f 16/24/84 20/30/84 21/27/84
|
||||
f 19/29/85 21/27/85 20/30/85
|
||||
f 23/31/86 24/32/86 21/27/86
|
||||
f 22/9/87 24/32/87 23/31/87
|
||||
f 17/25/88 18/28/88 24/32/88
|
||||
f 28/33/89 30/36/89 29/6/89
|
||||
f 28/33/90 32/38/90 33/35/90
|
||||
f 31/37/91 33/35/91 32/38/91
|
||||
f 35/39/92 36/41/92 33/35/92
|
||||
f 34/4/93 36/41/93 35/39/93
|
||||
f 29/6/94 30/36/94 36/41/94
|
||||
f 40/42/95 42/46/95 41/43/95
|
||||
f 40/42/96 44/48/96 45/45/96
|
||||
f 43/47/97 45/45/97 44/48/97
|
||||
f 47/49/98 48/52/98 45/45/98
|
||||
f 46/50/99 48/52/99 47/49/99
|
||||
f 46/50/100 41/43/100 42/46/100
|
||||
f 1/14/33 5/13/33 28/33/33
|
||||
f 5/13/34 10/21/34 32/38/34
|
||||
f 32/38/35 10/21/35 3/23/35
|
||||
f 27/40/36 35/39/36 40/42/36
|
||||
f 40/42/37 35/39/37 31/37/37
|
||||
f 31/37/38 26/10/38 38/12/38
|
||||
f 39/51/39 47/49/39 16/24/39
|
||||
f 47/49/40 43/47/40 20/30/40
|
||||
f 20/30/41 43/47/41 38/12/41
|
||||
f 15/7/42 23/31/42 7/17/42
|
||||
f 7/17/43 23/31/43 19/29/43
|
||||
f 19/29/44 14/11/44 3/23/44
|
||||
f 79/53/101 77/70/101 41/43/101
|
||||
f 75/54/102 79/68/102 46/50/102
|
||||
f 27/40/47 37/44/47 73/55/47
|
||||
f 77/57/103 73/90/103 37/44/103
|
||||
f 27/40/104 67/56/104 71/58/104
|
||||
f 22/9/105 63/8/105 61/59/105
|
||||
f 29/6/106 69/5/106 65/60/106
|
||||
f 13/26/52 57/63/52 75/54/52
|
||||
f 15/7/53 2/19/53 49/61/53
|
||||
f 17/25/107 61/82/107 57/63/107
|
||||
f 25/34/55 65/88/55 51/64/55
|
||||
f 8/18/108 4/1/108 55/65/108
|
||||
f 76/67/109 80/69/109 79/68/109
|
||||
f 80/69/110 78/72/110 77/70/110
|
||||
f 74/71/111 73/90/111 77/57/111
|
||||
f 68/73/112 72/76/112 71/58/112
|
||||
f 70/74/113 69/5/113 71/75/113
|
||||
f 66/77/114 65/60/114 69/5/114
|
||||
f 60/78/115 64/80/115 63/8/115
|
||||
f 62/79/116 61/59/116 63/8/116
|
||||
f 58/81/117 57/63/117 61/82/117
|
||||
f 50/83/118 49/89/118 53/84/118
|
||||
f 56/86/119 54/85/119 53/66/119
|
||||
f 52/87/120 56/86/120 55/3/120
|
||||
f 52/87/69 51/64/69 65/88/69
|
||||
f 60/78/70 59/62/70 49/61/70
|
||||
f 76/67/71 75/54/71 57/63/71
|
||||
f 68/73/72 67/56/72 73/55/72
|
||||
f 2/19/121 8/18/121 53/84/121
|
||||
|
||||
@ -7,7 +7,7 @@ extern "C" {
|
||||
#endif
|
||||
|
||||
struct block_state {
|
||||
float destroyed_time;
|
||||
double destroyed_time;
|
||||
};
|
||||
|
||||
struct game_state {
|
||||
@ -24,6 +24,7 @@ extern "C" {
|
||||
float ball_dy;
|
||||
|
||||
double start_time;
|
||||
double time;
|
||||
double remaining;
|
||||
};
|
||||
|
||||
|
||||
@ -7,7 +7,7 @@ extern "C" {
|
||||
#endif
|
||||
|
||||
void reset_level(struct game_state * state);
|
||||
void update(struct game_state * state);
|
||||
void update(struct game_state * state, double time);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
@ -18,10 +18,43 @@ static inline vec3 clamp(vec3 v, vec3 min_v, vec3 max_v)
|
||||
clamp(v.z, min_v.z, max_v.z));
|
||||
}
|
||||
|
||||
bool aabb_circle_collision(vec3 aabb_position, vec3 circle_position)
|
||||
static inline float rcp(float f)
|
||||
{
|
||||
const vec3 bounds = vec3(2, 1, 0);
|
||||
if (f == 0.0f)
|
||||
return 0.0f;
|
||||
else
|
||||
return 1.0f / f;
|
||||
}
|
||||
|
||||
static inline vec3 rcp(vec3 v)
|
||||
{
|
||||
return vec3(rcp(v.x),
|
||||
rcp(v.y),
|
||||
rcp(v.z));
|
||||
}
|
||||
|
||||
static inline vec3 bounds_normal(vec3 bounds, vec3 point, vec3 cdistance0)
|
||||
{
|
||||
vec3 normal_space = rcp(bounds);
|
||||
|
||||
vec3 n = normal_space * point;
|
||||
|
||||
if (fabsf(n.x) > fabsf(n.y))
|
||||
return vec3(1 * fabsf(n.x) / n.x, 0, 0);
|
||||
else if (fabsf(n.y) > fabsf(n.x))
|
||||
return vec3(0, 1 * fabsf(n.y) / n.y, 0);
|
||||
else {
|
||||
if (fabsf(cdistance0.x) > fabsf(cdistance0.y))
|
||||
return vec3(1 * -fabsf(cdistance0.x) / cdistance0.x, 0, 0);
|
||||
else if (fabsf(cdistance0.y) > fabsf(cdistance0.x))
|
||||
return vec3(0, 1 * -fabsf(cdistance0.y) / cdistance0.y, 0);
|
||||
else
|
||||
return normalize(vec3(1, 1, 0));
|
||||
}
|
||||
}
|
||||
|
||||
bool aabb_circle_collision(vec3 aabb_position, vec3 circle_position, vec3 bounds, struct collision_data * data)
|
||||
{
|
||||
vec3 distance = circle_position - aabb_position;
|
||||
vec3 closest_point_pd = clamp(distance, -bounds, bounds);
|
||||
vec3 closest_point_p = aabb_position + closest_point_pd;
|
||||
@ -30,5 +63,16 @@ bool aabb_circle_collision(vec3 aabb_position, vec3 circle_position)
|
||||
if (!collided)
|
||||
return collided;
|
||||
|
||||
vec3 cdistance0 = closest_point_p - circle_position;
|
||||
vec3 cdistance = normalize(cdistance0);
|
||||
vec3 closest_point_c = circle_position + cdistance;
|
||||
vec3 penetration_dir = closest_point_p - closest_point_c;
|
||||
vec3 penetration_vec = normalize(penetration_dir);
|
||||
|
||||
vec3 escape_position = circle_position + penetration_vec * magnitude(penetration_dir);
|
||||
|
||||
data->escape_position = escape_position;
|
||||
data->bounds_normal = bounds_normal(bounds, closest_point_pd, cdistance0);
|
||||
|
||||
return collided;
|
||||
}
|
||||
|
||||
10
src/main.c
10
src/main.c
@ -167,6 +167,8 @@ int main()
|
||||
reset_level(&state);
|
||||
state.start_time = glfwGetTime();
|
||||
|
||||
glEnable(GL_DEPTH_TEST);
|
||||
|
||||
while(!glfwWindowShouldClose(window)) {
|
||||
if(glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
|
||||
glfwSetWindowShouldClose(window, true);
|
||||
@ -209,9 +211,8 @@ int main()
|
||||
if (state.paddle_x > 12 - extent)
|
||||
state.paddle_x = 12 - extent;
|
||||
|
||||
update(&state);
|
||||
double time = glfwGetTime();
|
||||
state.remaining = 20.0 - (time - state.start_time);
|
||||
update(&state, time);
|
||||
|
||||
if ((state.ball_x + state.ball_dx * 0.4) > 12.25f) {
|
||||
state.ball_x = 12.25f;
|
||||
@ -229,7 +230,8 @@ int main()
|
||||
state.ball_dy = -state.ball_dy;
|
||||
}
|
||||
|
||||
glEnable(GL_DEPTH_TEST);
|
||||
glEnable(GL_BLEND);
|
||||
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
||||
glDepthFunc(GL_GREATER);
|
||||
glUseProgram(program);
|
||||
|
||||
@ -245,7 +247,7 @@ int main()
|
||||
uniform_light_pos,
|
||||
&state);
|
||||
|
||||
glEnable(GL_DEPTH_TEST);
|
||||
glDisable(GL_BLEND);
|
||||
glDepthFunc(GL_ALWAYS);
|
||||
glUseProgram(font_program);
|
||||
|
||||
|
||||
@ -133,20 +133,26 @@ void render(mesh paddle_mesh,
|
||||
|
||||
for (int y = 0; y < 28; y++) {
|
||||
for (int x = 0; x < 13; x++) {
|
||||
char tile = state->level[y * 13 + x];
|
||||
//if (tile == 0)
|
||||
//continue;
|
||||
int block_ix = y * 13 + x;
|
||||
char tile = state->level[block_ix];
|
||||
if (tile == 0)
|
||||
continue;
|
||||
double destroyed_time = state->blocks[block_ix].destroyed_time;
|
||||
double dt = state->time - destroyed_time;
|
||||
if (destroyed_time != 0.0 && dt >= 2.0)
|
||||
continue;
|
||||
|
||||
const float cs = 1.0f / 255.0f;
|
||||
vec3 base_color = vec3(((float)state->pal[tile * 3 + 0]) * cs,
|
||||
|
||||
vec4 base_color = vec4(((float)state->pal[tile * 3 + 0]) * cs,
|
||||
((float)state->pal[tile * 3 + 1]) * cs,
|
||||
((float)state->pal[tile * 3 + 2]) * cs);
|
||||
((float)state->pal[tile * 3 + 2]) * cs,
|
||||
1.0f);
|
||||
if (destroyed_time != 0.0) {
|
||||
base_color = vec4(1, 0, 0, (float)((2.0 - dt) * 0.5));
|
||||
}
|
||||
|
||||
vec3 block_position = vec3(x * 4.0f, -y * 2.0f, 0.0f);
|
||||
vec3 ball_position = vec3(state->ball_x * 4.0f, -state->ball_y * 2.0f, 0.0);
|
||||
bool collided = aabb_circle_collision(block_position, ball_position);
|
||||
if (collided)
|
||||
base_color = vec3(1, 0, 0);
|
||||
|
||||
mat4x4 rx = rotate_x(-PI / 2.0f);
|
||||
mat4x4 t = translate(block_position);
|
||||
@ -158,7 +164,7 @@ void render(mesh paddle_mesh,
|
||||
|
||||
glUniform4fv(uniform_trans, 4, &trans[0][0]);
|
||||
glUniform3fv(uniform_normal_trans, 3, &normal_trans[0][0]);
|
||||
glUniform3fv(uniform_base_color, 1, &base_color[0]);
|
||||
glUniform4fv(uniform_base_color, 1, &base_color[0]);
|
||||
glUniform3fv(uniform_light_pos, 1, &light_pos[0]);
|
||||
|
||||
glDrawElements(GL_TRIANGLES, block_mesh.length, GL_UNSIGNED_INT, 0);
|
||||
@ -176,8 +182,7 @@ void render(mesh paddle_mesh,
|
||||
|
||||
mat4x4 trans = a * t * rx;
|
||||
mat3x3 normal_trans = submatrix(rx, 3, 3);
|
||||
//vec3 base_color = vec3(1, 1, 1);
|
||||
vec3 base_color = vec3(1, 1, 1) * 0.5f;
|
||||
vec4 base_color = vec4(0.5f, 0.5f, 0.5f, 1.0f);
|
||||
//vec3 light_pos = vec3(-1, -1, 1);
|
||||
|
||||
glBindBuffer(GL_ARRAY_BUFFER, paddle_mesh.vtx);
|
||||
@ -210,7 +215,7 @@ void render(mesh paddle_mesh,
|
||||
|
||||
glUniform4fv(uniform_trans, 4, &trans[0][0]);
|
||||
glUniform3fv(uniform_normal_trans, 3, &normal_trans[0][0]);
|
||||
glUniform3fv(uniform_base_color, 1, &base_color[0]);
|
||||
glUniform4fv(uniform_base_color, 1, &base_color[0]);
|
||||
glUniform3fv(uniform_light_pos, 1, &light_pos[0]);
|
||||
|
||||
glDrawElements(GL_TRIANGLES, paddle_mesh.length, GL_UNSIGNED_INT, 0);
|
||||
@ -226,8 +231,7 @@ void render(mesh paddle_mesh,
|
||||
|
||||
mat4x4 trans = a * t * rx;
|
||||
mat3x3 normal_trans = submatrix(rx, 3, 3);
|
||||
//vec3 base_color = vec3(1, 1, 1);
|
||||
vec3 base_color = vec3(1, 1, 1) * 0.5f;
|
||||
vec4 base_color = vec4(0.5f, 0.5f, 0.5f, 1.0f);
|
||||
//vec3 light_pos = vec3(-1, -1, 1);
|
||||
|
||||
glBindBuffer(GL_ARRAY_BUFFER, ball_mesh.vtx);
|
||||
@ -260,7 +264,7 @@ void render(mesh paddle_mesh,
|
||||
|
||||
glUniform4fv(uniform_trans, 4, &trans[0][0]);
|
||||
glUniform3fv(uniform_normal_trans, 3, &normal_trans[0][0]);
|
||||
glUniform3fv(uniform_base_color, 1, &base_color[0]);
|
||||
glUniform4fv(uniform_base_color, 1, &base_color[0]);
|
||||
glUniform3fv(uniform_light_pos, 1, &light_pos[0]);
|
||||
|
||||
glDrawElements(GL_TRIANGLES, paddle_mesh.length, GL_UNSIGNED_INT, 0);
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
#version 120
|
||||
|
||||
uniform vec3 base_color;
|
||||
uniform vec4 base_color;
|
||||
uniform vec3 light_pos;
|
||||
|
||||
varying vec3 fp_position;
|
||||
@ -15,9 +15,9 @@ void main()
|
||||
vec3 light_dir = normalize(light_pos - fp_position);
|
||||
float diffuse = max(dot(fp_normal, light_dir), 0.0);
|
||||
|
||||
vec3 color = (diffuse + 0.5) * base_color;
|
||||
vec3 color = (diffuse + 0.5) * base_color.xyz;
|
||||
|
||||
gl_FragColor = vec4(color, 1.0);
|
||||
gl_FragColor = vec4(color, base_color.w);
|
||||
//gl_FragColor = vec4(fp_normal * 0.5 + 0.5, 1.0);
|
||||
//gl_FragColor = vec4(fp_texture, 0.0, 1.0);
|
||||
}
|
||||
|
||||
@ -3,7 +3,7 @@
|
||||
#include <assert.h>
|
||||
|
||||
#include "update.hpp"
|
||||
#include "collision.hpp"
|
||||
#include "collision2.hpp"
|
||||
#include "state.h"
|
||||
|
||||
#include "level/level1.data.h"
|
||||
@ -20,8 +20,8 @@ void reset_level(struct game_state * state)
|
||||
state->ball_x = 0.0;
|
||||
state->ball_y = 25.0;
|
||||
|
||||
state->ball_dx = 0.01;
|
||||
state->ball_dy = 0.01;
|
||||
state->ball_dx = 0.1;
|
||||
state->ball_dy = 0.1;
|
||||
|
||||
state->start_time = 0.0;
|
||||
|
||||
@ -36,8 +36,41 @@ void reset_level(struct game_state * state)
|
||||
}
|
||||
}
|
||||
|
||||
void update(struct game_state * state)
|
||||
void update(struct game_state * state, double time)
|
||||
{
|
||||
for (int y = 0; y < 28; y++) {
|
||||
for (int x = 0; x < 13; x++) {
|
||||
int block_ix = y * 13 + x;
|
||||
char tile = state->level[block_ix];
|
||||
if (tile == 0)
|
||||
continue;
|
||||
if (state->blocks[block_ix].destroyed_time != 0.0)
|
||||
continue;
|
||||
|
||||
vec3 block_position = vec3(x * 4.0f, -y * 2.0f, 0.0f);
|
||||
vec3 ball_position = vec3(state->ball_x * 4.0f, -state->ball_y * 2.0f, 0.0);
|
||||
|
||||
// paddle 6.0
|
||||
// block 4.0
|
||||
// const vec3 paddle_bounds = vec3(3, 1, 0);
|
||||
const vec3 block_bounds = vec3(2, 1, 0);
|
||||
struct collision_data cd;
|
||||
bool collided = aabb_circle_collision(block_position, ball_position, block_bounds, &cd);
|
||||
if (collided) {
|
||||
state->ball_x = cd.escape_position.x / 4.0f;
|
||||
state->ball_y = -cd.escape_position.y / 2.0f;
|
||||
vec3 vel = reflect(vec3(state->ball_dx, state->ball_dy, 0), cd.bounds_normal);
|
||||
state->ball_dx = vel.x;
|
||||
state->ball_dy = vel.y;
|
||||
|
||||
state->blocks[block_ix].destroyed_time = time;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
state->ball_x += state->ball_dx;
|
||||
state->ball_y += state->ball_dy;
|
||||
|
||||
state->time = time;
|
||||
state->remaining = 20.0 - (time - state->start_time);
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user